Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To evaluate the expression [tex]\(\log_3(9^{400})\)[/tex] using the Laws of Logarithms, follow these steps:
1. Understand the base of the exponent in the argument: Recognize that [tex]\(9\)[/tex] can be expressed as a power of [tex]\(3\)[/tex]. Specifically, [tex]\(9\)[/tex] is the same as [tex]\(3^2\)[/tex]. Therefore, the expression inside the logarithm can be rewritten:
[tex]\[ 9^{400} = (3^2)^{400} \][/tex]
2. Use the power rule for exponents: According to the power rule, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]. Applying this gives:
[tex]\[ (3^2)^{400} = 3^{2 \cdot 400} = 3^{800} \][/tex]
3. Apply the logarithm to the simplified expression: Now, the expression becomes:
[tex]\[ \log_3(3^{800}) \][/tex]
4. Use the power rule of logarithms: The power rule for logarithms states that [tex]\(\log_b(a^c) = c \cdot \log_b(a)\)[/tex]. Here, let [tex]\(a = 3\)[/tex], [tex]\(b = 3\)[/tex], and [tex]\(c = 800\)[/tex]. Therefore:
[tex]\[ \log_3(3^{800}) = 800 \cdot \log_3(3) \][/tex]
5. Simplify the logarithm: Recall that [tex]\(\log_b(b) = 1\)[/tex] for any base [tex]\(b\)[/tex] because any number raised to the power of 1 is itself. Thus:
[tex]\[ \log_3(3) = 1 \][/tex]
6. Finalize the calculation: Substitute [tex]\(\log_3(3) = 1\)[/tex] back into the expression:
[tex]\[ 800 \cdot \log_3(3) = 800 \cdot 1 \][/tex]
Thus, the final result is:
[tex]\[ 800 \][/tex]
Hence, the evaluated value of the expression [tex]\(\log_3(9^{400})\)[/tex] is [tex]\(800\)[/tex].
1. Understand the base of the exponent in the argument: Recognize that [tex]\(9\)[/tex] can be expressed as a power of [tex]\(3\)[/tex]. Specifically, [tex]\(9\)[/tex] is the same as [tex]\(3^2\)[/tex]. Therefore, the expression inside the logarithm can be rewritten:
[tex]\[ 9^{400} = (3^2)^{400} \][/tex]
2. Use the power rule for exponents: According to the power rule, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]. Applying this gives:
[tex]\[ (3^2)^{400} = 3^{2 \cdot 400} = 3^{800} \][/tex]
3. Apply the logarithm to the simplified expression: Now, the expression becomes:
[tex]\[ \log_3(3^{800}) \][/tex]
4. Use the power rule of logarithms: The power rule for logarithms states that [tex]\(\log_b(a^c) = c \cdot \log_b(a)\)[/tex]. Here, let [tex]\(a = 3\)[/tex], [tex]\(b = 3\)[/tex], and [tex]\(c = 800\)[/tex]. Therefore:
[tex]\[ \log_3(3^{800}) = 800 \cdot \log_3(3) \][/tex]
5. Simplify the logarithm: Recall that [tex]\(\log_b(b) = 1\)[/tex] for any base [tex]\(b\)[/tex] because any number raised to the power of 1 is itself. Thus:
[tex]\[ \log_3(3) = 1 \][/tex]
6. Finalize the calculation: Substitute [tex]\(\log_3(3) = 1\)[/tex] back into the expression:
[tex]\[ 800 \cdot \log_3(3) = 800 \cdot 1 \][/tex]
Thus, the final result is:
[tex]\[ 800 \][/tex]
Hence, the evaluated value of the expression [tex]\(\log_3(9^{400})\)[/tex] is [tex]\(800\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.