Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To formally prove that [tex]\(\lim_{{x \to -5}} \left( \frac{4}{5}x - 5 \right) = -9 \)[/tex] using [tex]\(\epsilon\)[/tex]-[tex]\(\delta\)[/tex] definition, follow these steps:
1. Statement of the Limit:
We want to show that for every [tex]\(\epsilon > 0\)[/tex], there exists a [tex]\(\delta > 0\)[/tex] such that if [tex]\(|x + 5| < \delta\)[/tex], then [tex]\(|\left(\frac{4}{5}x - 5\right) + 9| < \epsilon\)[/tex].
2. Expression Manipulation:
Begin with the expression [tex]\(|\left(\frac{4}{5}x - 5\right) + 9|\)[/tex]:
[tex]\[ |\left(\frac{4}{5}x - 5\right) + 9| = |\frac{4}{5}x - 5 + 9| = |\frac{4}{5}x + 4| \][/tex]
Factor out [tex]\(\frac{4}{5}\)[/tex]:
[tex]\[ |\frac{4}{5}x + 4| = \left|\frac{4}{5}(x + 5)\right| \][/tex]
Simplify the absolute value term:
[tex]\[ = \frac{4}{5} |x + 5| \][/tex]
3. Setting the Desired Inequality:
We need:
[tex]\[ \frac{4}{5} |x + 5| < \epsilon \][/tex]
4. Solving for [tex]\(\delta\)[/tex]:
To find [tex]\(\delta\)[/tex] as a function of [tex]\(\epsilon\)[/tex], divide both sides of the above inequality by [tex]\(\frac{4}{5}\)[/tex]:
[tex]\[ |x + 5| < \frac{5}{4} \epsilon \][/tex]
Hence, we can choose:
[tex]\[ \delta = \frac{5}{4} \epsilon \][/tex]
So, for any [tex]\(\epsilon > 0\)[/tex], if we choose [tex]\(\delta = \frac{5}{4} \epsilon\)[/tex], then [tex]\(|x + 5| < \delta\)[/tex] will imply that [tex]\(|\left(\frac{4}{5}x - 5\right) + 9| < \epsilon\)[/tex].
Thus, [tex]\(\delta = \frac{5}{4} \epsilon\)[/tex] formally proves the limit.
1. Statement of the Limit:
We want to show that for every [tex]\(\epsilon > 0\)[/tex], there exists a [tex]\(\delta > 0\)[/tex] such that if [tex]\(|x + 5| < \delta\)[/tex], then [tex]\(|\left(\frac{4}{5}x - 5\right) + 9| < \epsilon\)[/tex].
2. Expression Manipulation:
Begin with the expression [tex]\(|\left(\frac{4}{5}x - 5\right) + 9|\)[/tex]:
[tex]\[ |\left(\frac{4}{5}x - 5\right) + 9| = |\frac{4}{5}x - 5 + 9| = |\frac{4}{5}x + 4| \][/tex]
Factor out [tex]\(\frac{4}{5}\)[/tex]:
[tex]\[ |\frac{4}{5}x + 4| = \left|\frac{4}{5}(x + 5)\right| \][/tex]
Simplify the absolute value term:
[tex]\[ = \frac{4}{5} |x + 5| \][/tex]
3. Setting the Desired Inequality:
We need:
[tex]\[ \frac{4}{5} |x + 5| < \epsilon \][/tex]
4. Solving for [tex]\(\delta\)[/tex]:
To find [tex]\(\delta\)[/tex] as a function of [tex]\(\epsilon\)[/tex], divide both sides of the above inequality by [tex]\(\frac{4}{5}\)[/tex]:
[tex]\[ |x + 5| < \frac{5}{4} \epsilon \][/tex]
Hence, we can choose:
[tex]\[ \delta = \frac{5}{4} \epsilon \][/tex]
So, for any [tex]\(\epsilon > 0\)[/tex], if we choose [tex]\(\delta = \frac{5}{4} \epsilon\)[/tex], then [tex]\(|x + 5| < \delta\)[/tex] will imply that [tex]\(|\left(\frac{4}{5}x - 5\right) + 9| < \epsilon\)[/tex].
Thus, [tex]\(\delta = \frac{5}{4} \epsilon\)[/tex] formally proves the limit.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.