Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's solve the problem step-by-step in a detailed manner:
1. Identify the Components:
- We have a number: [tex]\( 9 \)[/tex]
- This number is raised to a power: [tex]\( 6 \)[/tex]
- The base of the logarithm we are considering: [tex]\( 3 \)[/tex]
2. Logarithm of a Number Raised to a Power:
- We start with the expression: [tex]\( \log_3(9^6) \)[/tex]
- The property of logarithms that applies here is: [tex]\( \log_b(a^c) = c \cdot \log_b(a) \)[/tex]
- According to this property, we can rewrite [tex]\( \log_3(9^6) \)[/tex] as:
[tex]\[ \log_3(9^6) = 6 \cdot \log_3(9) \][/tex]
3. Simplify the Expression [tex]\( \log_3(9) \)[/tex]:
- Next, we need to evaluate [tex]\( \log_3(9) \)[/tex]
- Recall that [tex]\( 9 \)[/tex] is [tex]\( 3^2 \)[/tex]. Therefore, [tex]\( \log_3(9) \)[/tex] is the same as [tex]\( \log_3(3^2) \)[/tex]
- Using the property of logarithms again, [tex]\( \log_b(a^c) = c \cdot \log_b(a) \)[/tex], we have:
[tex]\[ \log_3(3^2) = 2 \cdot \log_3(3) \][/tex]
4. Evaluate [tex]\( \log_3(3) \)[/tex]:
- The logarithm of a number to its own base is [tex]\( 1 \)[/tex]. Thus, [tex]\( \log_3(3) = 1 \)[/tex]
- So, substituting this value, we get:
[tex]\[ \log_3(3^2) = 2 \cdot 1 = 2 \][/tex]
5. Combine the Results:
- Substituting [tex]\( \log_3(9) = 2 \)[/tex] back into our original expression:
[tex]\[ \log_3(9^6) = 6 \cdot \log_3(9) = 6 \cdot 2 = 12 \][/tex]
6. Conclusion:
- Therefore, the solution to the problem [tex]\( \log_3(9^6) \)[/tex] is:
[tex]\[ \log_3(9^6) = 12 \][/tex]
So, we have verified that the logarithm of a number raised to a power is the same as the power times the logarithm of the number, and in this problem, it accurately translates to the result:
[tex]\[ \boxed{12} \][/tex]
1. Identify the Components:
- We have a number: [tex]\( 9 \)[/tex]
- This number is raised to a power: [tex]\( 6 \)[/tex]
- The base of the logarithm we are considering: [tex]\( 3 \)[/tex]
2. Logarithm of a Number Raised to a Power:
- We start with the expression: [tex]\( \log_3(9^6) \)[/tex]
- The property of logarithms that applies here is: [tex]\( \log_b(a^c) = c \cdot \log_b(a) \)[/tex]
- According to this property, we can rewrite [tex]\( \log_3(9^6) \)[/tex] as:
[tex]\[ \log_3(9^6) = 6 \cdot \log_3(9) \][/tex]
3. Simplify the Expression [tex]\( \log_3(9) \)[/tex]:
- Next, we need to evaluate [tex]\( \log_3(9) \)[/tex]
- Recall that [tex]\( 9 \)[/tex] is [tex]\( 3^2 \)[/tex]. Therefore, [tex]\( \log_3(9) \)[/tex] is the same as [tex]\( \log_3(3^2) \)[/tex]
- Using the property of logarithms again, [tex]\( \log_b(a^c) = c \cdot \log_b(a) \)[/tex], we have:
[tex]\[ \log_3(3^2) = 2 \cdot \log_3(3) \][/tex]
4. Evaluate [tex]\( \log_3(3) \)[/tex]:
- The logarithm of a number to its own base is [tex]\( 1 \)[/tex]. Thus, [tex]\( \log_3(3) = 1 \)[/tex]
- So, substituting this value, we get:
[tex]\[ \log_3(3^2) = 2 \cdot 1 = 2 \][/tex]
5. Combine the Results:
- Substituting [tex]\( \log_3(9) = 2 \)[/tex] back into our original expression:
[tex]\[ \log_3(9^6) = 6 \cdot \log_3(9) = 6 \cdot 2 = 12 \][/tex]
6. Conclusion:
- Therefore, the solution to the problem [tex]\( \log_3(9^6) \)[/tex] is:
[tex]\[ \log_3(9^6) = 12 \][/tex]
So, we have verified that the logarithm of a number raised to a power is the same as the power times the logarithm of the number, and in this problem, it accurately translates to the result:
[tex]\[ \boxed{12} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.