Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's simplify the given expression step-by-step:
We start with the expression:
[tex]\[ (3x^2 - 2x + 1) + (x^2 + 4x - 3) \][/tex]
### Step 1: Identify and Group Like Terms
To combine the polynomials, we need to identify the like terms. Like terms are terms that have the same variable raised to the same power.
So, group the [tex]\(x^2\)[/tex] terms, the [tex]\(x\)[/tex] terms, and the constant terms together:
[tex]\[ (3x^2 + x^2) + (-2x + 4x) + (1 - 3) \][/tex]
### Step 2: Combine the Like Terms
Now, combine the coefficients of the like terms:
1. For the [tex]\(x^2\)[/tex] terms:
[tex]\[ 3x^2 + x^2 = 4x^2 \][/tex]
2. For the [tex]\(x\)[/tex] terms:
[tex]\[ -2x + 4x = 2x \][/tex]
3. For the constant terms:
[tex]\[ 1 - 3 = -2 \][/tex]
### Step 3: Construct the Resulting Polynomial
Put all the combined terms together to get the final polynomial:
[tex]\[ 4x^2 + 2x - 2 \][/tex]
### Final Answer
The simplified form of the expression [tex]\(\left(3 x^2 - 2 x + 1\right) + \left(x^2 + 4 x - 3\right)\)[/tex] is:
[tex]\[ 4x^2 + 2x - 2\][/tex]
This is the combined polynomial obtained by adding the given polynomials.
We start with the expression:
[tex]\[ (3x^2 - 2x + 1) + (x^2 + 4x - 3) \][/tex]
### Step 1: Identify and Group Like Terms
To combine the polynomials, we need to identify the like terms. Like terms are terms that have the same variable raised to the same power.
So, group the [tex]\(x^2\)[/tex] terms, the [tex]\(x\)[/tex] terms, and the constant terms together:
[tex]\[ (3x^2 + x^2) + (-2x + 4x) + (1 - 3) \][/tex]
### Step 2: Combine the Like Terms
Now, combine the coefficients of the like terms:
1. For the [tex]\(x^2\)[/tex] terms:
[tex]\[ 3x^2 + x^2 = 4x^2 \][/tex]
2. For the [tex]\(x\)[/tex] terms:
[tex]\[ -2x + 4x = 2x \][/tex]
3. For the constant terms:
[tex]\[ 1 - 3 = -2 \][/tex]
### Step 3: Construct the Resulting Polynomial
Put all the combined terms together to get the final polynomial:
[tex]\[ 4x^2 + 2x - 2 \][/tex]
### Final Answer
The simplified form of the expression [tex]\(\left(3 x^2 - 2 x + 1\right) + \left(x^2 + 4 x - 3\right)\)[/tex] is:
[tex]\[ 4x^2 + 2x - 2\][/tex]
This is the combined polynomial obtained by adding the given polynomials.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.