Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the period and amplitude of the function [tex]\( y = 4 \sin 6x \)[/tex], let's follow these steps:
1. Identify the amplitude:
- The amplitude of a sine function [tex]\( y = A \sin(Bx) \)[/tex] is given by the absolute value of the coefficient of the sine function.
- In the given function [tex]\( y = 4 \sin 6x \)[/tex], the coefficient of the sine term is 4.
- Therefore, the amplitude is [tex]\( \boxed{4} \)[/tex].
2. Determine the period:
- The period of a sine function [tex]\( y = A \sin(Bx) \)[/tex] is calculated using the formula:
[tex]\[ \text{Period} = \frac{2\pi}{B} \][/tex]
- In the given function [tex]\( y = 4 \sin 6x \)[/tex], the coefficient [tex]\( B \)[/tex] in front of [tex]\( x \)[/tex] is 6.
- Substituting [tex]\( B = 6 \)[/tex] into the period formula, we get:
[tex]\[ \text{Period} = \frac{2\pi}{6} = \frac{\pi}{3} \][/tex]
- Thus, the exact value of the period is [tex]\( \boxed{\frac{\pi}{3}} \)[/tex].
So, the exact values are:
- Amplitude: [tex]\( \boxed{4} \)[/tex]
- Period: [tex]\( \boxed{\frac{\pi}{3}} \)[/tex]
1. Identify the amplitude:
- The amplitude of a sine function [tex]\( y = A \sin(Bx) \)[/tex] is given by the absolute value of the coefficient of the sine function.
- In the given function [tex]\( y = 4 \sin 6x \)[/tex], the coefficient of the sine term is 4.
- Therefore, the amplitude is [tex]\( \boxed{4} \)[/tex].
2. Determine the period:
- The period of a sine function [tex]\( y = A \sin(Bx) \)[/tex] is calculated using the formula:
[tex]\[ \text{Period} = \frac{2\pi}{B} \][/tex]
- In the given function [tex]\( y = 4 \sin 6x \)[/tex], the coefficient [tex]\( B \)[/tex] in front of [tex]\( x \)[/tex] is 6.
- Substituting [tex]\( B = 6 \)[/tex] into the period formula, we get:
[tex]\[ \text{Period} = \frac{2\pi}{6} = \frac{\pi}{3} \][/tex]
- Thus, the exact value of the period is [tex]\( \boxed{\frac{\pi}{3}} \)[/tex].
So, the exact values are:
- Amplitude: [tex]\( \boxed{4} \)[/tex]
- Period: [tex]\( \boxed{\frac{\pi}{3}} \)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.