Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the length of the minor axis of the ellipse given the vertices and the foci, follow these steps:
1. Identify the coordinates of the vertices and foci:
- Vertices: [tex]\((-5, 7)\)[/tex] and [tex]\((-5, -3)\)[/tex]
- Foci: [tex]\((-5, 6)\)[/tex] and [tex]\((-5, -2)\)[/tex]
2. Calculate the length of the major axis:
- The major axis length is the distance between the vertices.
- The vertices have the same x-coordinate, so we only need to find the difference in the y-coordinates:
[tex]\[ |7 - (-3)| = |7 + 3| = 10 \][/tex]
- Hence, the length of the major axis is 10 units.
3. Determine the length of the semi-major axis (a):
- The semi-major axis is half the length of the major axis:
[tex]\[ a = \frac{10}{2} = 5 \][/tex]
4. Calculate the distance between the foci:
- The foci also have the same x-coordinate, so we only consider the difference in the y-coordinates:
[tex]\[ |6 - (-2)| = |6 + 2| = 8 \][/tex]
- Thus, the distance between the foci is 8 units.
5. Determine the length of the semi-major axis in terms of the linear distance (2c):
- Since the distance between the foci is equal to [tex]\(2c\)[/tex]:
[tex]\[ c = \frac{8}{2} = 4 \][/tex]
6. Use the relationship [tex]\(a^2 = b^2 + c^2\)[/tex] to find the length of the semi-minor axis (b):
- Substitute the values of [tex]\(a\)[/tex] and [tex]\(c\)[/tex] into the equation:
[tex]\[ a^2 = b^2 + c^2 \][/tex]
- With [tex]\(a = 5\)[/tex] and [tex]\(c = 4\)[/tex]:
[tex]\[ 5^2 = b^2 + 4^2 \][/tex]
[tex]\[ 25 = b^2 + 16 \][/tex]
- Solving for [tex]\(b^2\)[/tex]:
[tex]\[ b^2 = 25 - 16 = 9 \][/tex]
- Hence:
[tex]\[ b = \sqrt{9} = 3 \][/tex]
7. Calculate the length of the minor axis:
- The minor axis is twice the length of the semi-minor axis:
[tex]\[ \text{Minor axis length} = 2b = 2 \times 3 = 6 \][/tex]
Therefore, the length of the minor axis of the ellipse is 6 units.
1. Identify the coordinates of the vertices and foci:
- Vertices: [tex]\((-5, 7)\)[/tex] and [tex]\((-5, -3)\)[/tex]
- Foci: [tex]\((-5, 6)\)[/tex] and [tex]\((-5, -2)\)[/tex]
2. Calculate the length of the major axis:
- The major axis length is the distance between the vertices.
- The vertices have the same x-coordinate, so we only need to find the difference in the y-coordinates:
[tex]\[ |7 - (-3)| = |7 + 3| = 10 \][/tex]
- Hence, the length of the major axis is 10 units.
3. Determine the length of the semi-major axis (a):
- The semi-major axis is half the length of the major axis:
[tex]\[ a = \frac{10}{2} = 5 \][/tex]
4. Calculate the distance between the foci:
- The foci also have the same x-coordinate, so we only consider the difference in the y-coordinates:
[tex]\[ |6 - (-2)| = |6 + 2| = 8 \][/tex]
- Thus, the distance between the foci is 8 units.
5. Determine the length of the semi-major axis in terms of the linear distance (2c):
- Since the distance between the foci is equal to [tex]\(2c\)[/tex]:
[tex]\[ c = \frac{8}{2} = 4 \][/tex]
6. Use the relationship [tex]\(a^2 = b^2 + c^2\)[/tex] to find the length of the semi-minor axis (b):
- Substitute the values of [tex]\(a\)[/tex] and [tex]\(c\)[/tex] into the equation:
[tex]\[ a^2 = b^2 + c^2 \][/tex]
- With [tex]\(a = 5\)[/tex] and [tex]\(c = 4\)[/tex]:
[tex]\[ 5^2 = b^2 + 4^2 \][/tex]
[tex]\[ 25 = b^2 + 16 \][/tex]
- Solving for [tex]\(b^2\)[/tex]:
[tex]\[ b^2 = 25 - 16 = 9 \][/tex]
- Hence:
[tex]\[ b = \sqrt{9} = 3 \][/tex]
7. Calculate the length of the minor axis:
- The minor axis is twice the length of the semi-minor axis:
[tex]\[ \text{Minor axis length} = 2b = 2 \times 3 = 6 \][/tex]
Therefore, the length of the minor axis of the ellipse is 6 units.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.