Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
(a) √(160/207) ≈ 0.87917
(b) √(68/77) ≈ 0.93974
Step-by-step explanation:
You want the cosine of angle PAQ for the following sets of points:
- (a) P(1,2,-1), A(-2, 1,5), Q(2,-1,0)
- (b) P(0,2,-3), A(2,-1,5), Q(-2,3,-1).
Dot product
The dot product of vectors AP and AQ is ...
AP•AQ = |AP|·|AQ|·cos(θ)
where θ is the angle between the vectors. Solving for cos(θ), we have ...
[tex]\cos(\theta)=\dfrac{AP\cdot AQ}{|AP|\times|AQ|}[/tex]
(a) P(1, 2, -1)
The vectors are ...
AP = P -A = (1, 2, -1) -(-2, 1, 5) = (1+2, 2-1, -1-5) = (3, 1, -6)
AQ = Q -A = (2, -1, 0) -(-2, 1, 5) = (2+2, -1-1, 0-5) = (4, -2, -5)
And their magnitudes are ...
|AP| = √(3² +1² +(-6)²) = √46
|AQ| = √(4² +(-2)² +(-5)²) = 3√5
Then the cosine of the angle is found as ...
AP•AQ = 3·4 +1(-2) -6(-5) = 12 -2 +30 = 40
[tex]\cos(\theta)=\dfrac{40}{\sqrt{46}\cdot3\sqrt{5}}\\\\\\\boxed{\cos(\theta)=\sqrt{\dfrac{160}{207}}}[/tex]
(b) P(0, 2, -3)
The vectors are ...
AP = P -A = (0, 2, -3) -(2, -1, 5) = (0-2, 2+1, -3-5) = (-2, 3, -8)
AQ = Q -A = (-2, 3, -1) -(2, -1, 5) = (-2-2, 3+1, -1-5) = (-4, 4, -6)
And their magnitudes are ...
|AP| = √((-2)² +3² +(-8)²) = √77
|AQ| = √((-4)² +4² +(-6)²) = √68
Then the cosine of the angle is found as ...
AP•AQ = (-2)(-4) +(3)(4) +(-8)(-6) = 8 +12+48 = 68
[tex]\cos(\theta)=\dfrac{68}{\sqrt{77}\cdot \sqrt{68}}\\\\\\\boxed{\cos(\theta)=\sqrt{\dfrac{68}{77}}}[/tex]
__
Additional comment
You can also use the law of cosines, but that requires the additional computation of vector PQ and its magnitude.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.