Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Find an equation for the line with the given properties. Express your answer using either the general form or the slope-intercept form of the equation.

Perpendicular to the line [tex]y=-\frac{1}{2}x-1[/tex]; containing the point [tex]\((2,4)\)[/tex].

The equation is [tex]\(\square\)[/tex]

(Type an equation. Simplify your answer.)


Sagot :

To find the equation of a line, consider its slope and a point through which it passes. The line should be perpendicular to the given line [tex]\( y = -\frac{1}{2} x - 1 \)[/tex] and contain the point [tex]\( (2, 4) \)[/tex].

### Step-by-Step Solution:

1. Determine the slope of the given line:
The given line is [tex]\( y = -\frac{1}{2} x - 1 \)[/tex]. The slope [tex]\( m \)[/tex] of this line is [tex]\( -\frac{1}{2} \)[/tex].

2. Find the slope of the perpendicular line:
For two lines to be perpendicular, the product of their slopes must be [tex]\(-1\)[/tex]. Mathematically, if [tex]\( m_1 \)[/tex] is the slope of the first line, and [tex]\( m_2 \)[/tex] is the slope of the line perpendicular to it, then:
[tex]\[ m_1 \cdot m_2 = -1 \][/tex]

Given [tex]\( m_1 = -\frac{1}{2} \)[/tex]:
[tex]\[ -\frac{1}{2} \cdot m_2 = -1 \][/tex]

Solving for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = 2 \][/tex]

Therefore, the slope of the perpendicular line is [tex]\( 2 \)[/tex].

3. Use the point-slope form of the equation of a line:
The perpendicular line must pass through the point [tex]\( (2, 4) \)[/tex]. The point-slope form of the equation is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]

Here, [tex]\( (x_1, y_1) = (2, 4) \)[/tex] and [tex]\( m = 2 \)[/tex]:
[tex]\[ y - 4 = 2(x - 2) \][/tex]

4. Simplify to obtain the equation in slope-intercept form:
Distribute the slope on the right side:
[tex]\[ y - 4 = 2x - 4 \][/tex]

Add 4 to both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = 2x \][/tex]

Thus, the equation of the line that is perpendicular to [tex]\( y = -\frac{1}{2} x - 1 \)[/tex] and passes through the point [tex]\( (2, 4) \)[/tex] is:
[tex]\[ \boxed{y = 2x} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.