At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the vertex of the quadratic function [tex]\( f(x) \)[/tex], let's examine each given form of the function.
Form (A): [tex]\( f(x)=3(x+6)^2-75 \)[/tex]
This form of the quadratic function is known as the vertex form. The vertex form of a quadratic function is given by:
[tex]\[ f(x) = a(x - h)^2 + k \][/tex]
where [tex]\((h, k)\)[/tex] is the vertex of the parabola.
Given the function [tex]\( f(x)=3(x+6)^2-75 \)[/tex]:
- We can identify [tex]\( (x + 6) \)[/tex] as [tex]\( (x - (-6)) \)[/tex], which means [tex]\( h = -6 \)[/tex].
- The constant term is [tex]\(-75\)[/tex], so [tex]\( k = -75 \)[/tex].
Thus, the vertex form of the function quickly reveals that the vertex is [tex]\((-6, -75)\)[/tex].
Form (B): [tex]\( f(x)=3x^2+36x+33 \)[/tex]
This form is the standard form of the quadratic function, [tex]\( f(x) = ax^2 + bx + c \)[/tex].
To find the vertex from the standard form, we typically use the vertex formula:
[tex]\[ h = -\frac{b}{2a} \][/tex]
where [tex]\( a = 3 \)[/tex] and [tex]\( b = 36 \)[/tex].
Using the formula:
[tex]\[ h = -\frac{36}{2 \cdot 3} = -\frac{36}{6} = -6 \][/tex]
Next, we substitute [tex]\( h = -6 \)[/tex] back into the function to find [tex]\( k \)[/tex]:
[tex]\[ f(-6) = 3(-6)^2 + 36(-6) + 33 = 3(36) - 216 + 33 = 108 - 216 + 33 = -75 \][/tex]
So, the vertex is [tex]\((-6, -75)\)[/tex].
Form (C): [tex]\( f(x)=3(x+1)(x+11) \)[/tex]
This form is the factored form of the quadratic function. To find the vertex, we need to find the midpoint of the roots:
The roots of the function occur where each factor is zero:
[tex]\[ x + 1 = 0 \implies x = -1 \][/tex]
[tex]\[ x + 11 = 0 \implies x = -11 \][/tex]
The average of the roots gives the x-coordinate of the vertex:
[tex]\[ h = \frac{-1 + (-11)}{2} = \frac{-12}{2} = -6 \][/tex]
Substitute [tex]\( h = -6 \)[/tex] back into the function to find [tex]\( k \)[/tex]:
[tex]\[ f(-6) = 3(-6 + 1)(-6 + 11) = 3(-5)(5) = 3(-25) = -75 \][/tex]
So, the vertex is [tex]\((-6, -75)\)[/tex].
Conclusion:
The vertex form (A), [tex]\( f(x)=3(x+6)^2-75 \)[/tex], most quickly reveals the vertex because it is directly readable from the equation.
The vertex is [tex]\( \boxed{(-6, -75)} \)[/tex].
Form (A): [tex]\( f(x)=3(x+6)^2-75 \)[/tex]
This form of the quadratic function is known as the vertex form. The vertex form of a quadratic function is given by:
[tex]\[ f(x) = a(x - h)^2 + k \][/tex]
where [tex]\((h, k)\)[/tex] is the vertex of the parabola.
Given the function [tex]\( f(x)=3(x+6)^2-75 \)[/tex]:
- We can identify [tex]\( (x + 6) \)[/tex] as [tex]\( (x - (-6)) \)[/tex], which means [tex]\( h = -6 \)[/tex].
- The constant term is [tex]\(-75\)[/tex], so [tex]\( k = -75 \)[/tex].
Thus, the vertex form of the function quickly reveals that the vertex is [tex]\((-6, -75)\)[/tex].
Form (B): [tex]\( f(x)=3x^2+36x+33 \)[/tex]
This form is the standard form of the quadratic function, [tex]\( f(x) = ax^2 + bx + c \)[/tex].
To find the vertex from the standard form, we typically use the vertex formula:
[tex]\[ h = -\frac{b}{2a} \][/tex]
where [tex]\( a = 3 \)[/tex] and [tex]\( b = 36 \)[/tex].
Using the formula:
[tex]\[ h = -\frac{36}{2 \cdot 3} = -\frac{36}{6} = -6 \][/tex]
Next, we substitute [tex]\( h = -6 \)[/tex] back into the function to find [tex]\( k \)[/tex]:
[tex]\[ f(-6) = 3(-6)^2 + 36(-6) + 33 = 3(36) - 216 + 33 = 108 - 216 + 33 = -75 \][/tex]
So, the vertex is [tex]\((-6, -75)\)[/tex].
Form (C): [tex]\( f(x)=3(x+1)(x+11) \)[/tex]
This form is the factored form of the quadratic function. To find the vertex, we need to find the midpoint of the roots:
The roots of the function occur where each factor is zero:
[tex]\[ x + 1 = 0 \implies x = -1 \][/tex]
[tex]\[ x + 11 = 0 \implies x = -11 \][/tex]
The average of the roots gives the x-coordinate of the vertex:
[tex]\[ h = \frac{-1 + (-11)}{2} = \frac{-12}{2} = -6 \][/tex]
Substitute [tex]\( h = -6 \)[/tex] back into the function to find [tex]\( k \)[/tex]:
[tex]\[ f(-6) = 3(-6 + 1)(-6 + 11) = 3(-5)(5) = 3(-25) = -75 \][/tex]
So, the vertex is [tex]\((-6, -75)\)[/tex].
Conclusion:
The vertex form (A), [tex]\( f(x)=3(x+6)^2-75 \)[/tex], most quickly reveals the vertex because it is directly readable from the equation.
The vertex is [tex]\( \boxed{(-6, -75)} \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.