Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine at what time the temperature will reach [tex]$100^\circ C$[/tex], we can use the line of best fit for the given data. Here is a step-by-step explanation:
1. Gather Data: The recorded times (in minutes) and corresponding temperatures (in degrees Celsius) are:
- Time (minutes): [tex]\([0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4, 4.5]\)[/tex]
- Temperature (°C): [tex]\([75, 79, 83, 86, 89, 91, 93, 94, 95, 95.5]\)[/tex]
2. Calculate the Line of Best Fit: The line of best fit for this data takes the form [tex]\( y = mx + b \)[/tex], where:
- [tex]\( y \)[/tex] is the temperature
- [tex]\( x \)[/tex] is the time
- [tex]\( m \)[/tex] is the slope of the line
- [tex]\( b \)[/tex] is the y-intercept
3. Find the Slope and Intercept: Through analysis of the dataset:
- The slope ([tex]\(m\)[/tex]) of the line of best fit is approximately [tex]\(4.539\)[/tex].
- The y-intercept ([tex]\(b\)[/tex]) is approximately [tex]\(77.836\)[/tex].
4. Formulate the Line of Best Fit Equation:
[tex]\[ \text{Temperature} = 4.539 \cdot \text{Time} + 77.836 \][/tex]
5. Determine the Time for [tex]$100^\circ C$[/tex]: We need to find the time ([tex]\(t\)[/tex]) when the temperature ([tex]\(T\)[/tex]) reaches [tex]\(100^\circ C\)[/tex]. Substitute [tex]\(T = 100\)[/tex] into the line of best fit equation:
[tex]\[ 100 = 4.539 \cdot t + 77.836 \][/tex]
6. Solve for [tex]\(t\)[/tex]:
[tex]\[ 100 = 4.539 \cdot t + 77.836 \][/tex]
[tex]\[ 100 - 77.836 = 4.539 \cdot t \][/tex]
[tex]\[ 22.164 = 4.539 \cdot t \][/tex]
[tex]\[ t = \frac{22.164}{4.539} \][/tex]
[tex]\[ t \approx 4.883 \, \text{minutes} \][/tex]
Therefore, the temperature will reach [tex]\(100^\circ C\)[/tex] at approximately [tex]\(4.883\)[/tex] minutes. Interpreting this in terms of the given multiple choice answers:
- The time is approximately 4.88 minutes, which is closest to 5 minutes.
So, according to the line of best fit, the time when the temperature will reach [tex]\(100^\circ C\)[/tex] is 5 minutes.
1. Gather Data: The recorded times (in minutes) and corresponding temperatures (in degrees Celsius) are:
- Time (minutes): [tex]\([0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4, 4.5]\)[/tex]
- Temperature (°C): [tex]\([75, 79, 83, 86, 89, 91, 93, 94, 95, 95.5]\)[/tex]
2. Calculate the Line of Best Fit: The line of best fit for this data takes the form [tex]\( y = mx + b \)[/tex], where:
- [tex]\( y \)[/tex] is the temperature
- [tex]\( x \)[/tex] is the time
- [tex]\( m \)[/tex] is the slope of the line
- [tex]\( b \)[/tex] is the y-intercept
3. Find the Slope and Intercept: Through analysis of the dataset:
- The slope ([tex]\(m\)[/tex]) of the line of best fit is approximately [tex]\(4.539\)[/tex].
- The y-intercept ([tex]\(b\)[/tex]) is approximately [tex]\(77.836\)[/tex].
4. Formulate the Line of Best Fit Equation:
[tex]\[ \text{Temperature} = 4.539 \cdot \text{Time} + 77.836 \][/tex]
5. Determine the Time for [tex]$100^\circ C$[/tex]: We need to find the time ([tex]\(t\)[/tex]) when the temperature ([tex]\(T\)[/tex]) reaches [tex]\(100^\circ C\)[/tex]. Substitute [tex]\(T = 100\)[/tex] into the line of best fit equation:
[tex]\[ 100 = 4.539 \cdot t + 77.836 \][/tex]
6. Solve for [tex]\(t\)[/tex]:
[tex]\[ 100 = 4.539 \cdot t + 77.836 \][/tex]
[tex]\[ 100 - 77.836 = 4.539 \cdot t \][/tex]
[tex]\[ 22.164 = 4.539 \cdot t \][/tex]
[tex]\[ t = \frac{22.164}{4.539} \][/tex]
[tex]\[ t \approx 4.883 \, \text{minutes} \][/tex]
Therefore, the temperature will reach [tex]\(100^\circ C\)[/tex] at approximately [tex]\(4.883\)[/tex] minutes. Interpreting this in terms of the given multiple choice answers:
- The time is approximately 4.88 minutes, which is closest to 5 minutes.
So, according to the line of best fit, the time when the temperature will reach [tex]\(100^\circ C\)[/tex] is 5 minutes.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.