Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

A ship sails 133 miles north, then turns and sails at an angle of [tex]$20^{\circ}$[/tex] east of north for 229 miles. What is the direction of the ship's resultant vector?

[tex]
\begin{array}{c}
|\overrightarrow{ R }| = 356.89 \text { miles } \\
\theta = [?]^{\circ}
\end{array}
[/tex]

Round your answer to the nearest hundredth.


Sagot :

To find the direction of the ship's resultant vector when it sails 133 miles north and then turns and sails at an angle of [tex]$20^{\circ}$[/tex] east of north for 229 miles, we need to break down the motion into its components and then use trigonometry to find the resultant direction.

### Step-by-Step Solution:

#### 1. Break Down the Second Leg into Components:

The ship sails 229 miles at an angle of [tex]$20^{\circ}$[/tex] east of north. This direction forms a triangle where:

- x-component (East/West): [tex]\( 229 \sin(20^{\circ}) \)[/tex]
- y-component (North/South): [tex]\( 229 \cos(20^{\circ}) \)[/tex]

Given the calculations, these components are:
- x-component: 78.32 miles (east)
- y-component: 215.19 miles (north)

#### 2. Sum up the Northward Components:

The ship initially sails 133 miles north. Adding this to the y-component of the second leg:

Total northward distance: [tex]\(133 + 215.19 = 348.19\)[/tex] miles

#### 3. Calculate the Direction:

To find the angle [tex]$\theta$[/tex] north of east, we use the arctangent of the ratio of the x-component to the total y-component. The formula for [tex]$\theta$[/tex] is:

[tex]\[ \theta = \arctan\left(\frac{\text{x-component}}{\text{total y-component}}\right) \][/tex]

Substituting the given values:

[tex]\[ \theta = \arctan\left(\frac{78.32}{348.19}\right) \][/tex]

#### 4. Convert the Angle to Degrees:

Using a calculator or a trigonometric table, we find:

[tex]\[ \theta \approx 12.68^\circ \][/tex]

Thus, the direction of the ship's resultant vector is approximately [tex]\( \boxed{12.68^\circ} \)[/tex] east of north.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.