Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! To find an equivalent expression for [tex]\(\frac{81 t^2 + 27 t}{9 t^2 + 9 t}\)[/tex] for [tex]\(t \neq 0\)[/tex], let's simplify the fraction step-by-step.
1. Factor the numerator and the denominator:
The numerator is [tex]\(81 t^2 + 27 t\)[/tex]. We can factor out the greatest common factor, which is [tex]\(27 t\)[/tex]:
[tex]\[ 81 t^2 + 27 t = 27 t (3 t + 1) \][/tex]
The denominator is [tex]\(9 t^2 + 9 t\)[/tex]. We can factor out the greatest common factor, which is [tex]\(9 t\)[/tex]:
[tex]\[ 9 t^2 + 9 t = 9 t (t + 1) \][/tex]
2. Rewrite the fraction using the factored forms:
[tex]\[ \frac{81 t^2 + 27 t}{9 t^2 + 9 t} = \frac{27 t (3 t + 1)}{9 t (t + 1)} \][/tex]
3. Simplify the fraction by canceling out the common terms:
Both the numerator and the denominator contain the term [tex]\(t\)[/tex] (where [tex]\(t \neq 0\)[/tex]) and a constant factor that can be canceled out:
[tex]\[ \frac{27 t (3 t + 1)}{9 t (t + 1)} = \frac{27 (3 t + 1)}{9 (t + 1)} = 3 \cdot \frac{3 t + 1}{t + 1} \][/tex]
Thus, the expression simplifies to:
[tex]\[ \boxed{3 \cdot \frac{3 t + 1}{t + 1}} \][/tex]
So, for [tex]\(t \neq 0\)[/tex], the given expression [tex]\(\frac{81 t^2 + 27 t}{9 t^2 + 9 t}\)[/tex] is equivalent to [tex]\(\boxed{3 \cdot \frac{3 t + 1}{t + 1}}\)[/tex].
1. Factor the numerator and the denominator:
The numerator is [tex]\(81 t^2 + 27 t\)[/tex]. We can factor out the greatest common factor, which is [tex]\(27 t\)[/tex]:
[tex]\[ 81 t^2 + 27 t = 27 t (3 t + 1) \][/tex]
The denominator is [tex]\(9 t^2 + 9 t\)[/tex]. We can factor out the greatest common factor, which is [tex]\(9 t\)[/tex]:
[tex]\[ 9 t^2 + 9 t = 9 t (t + 1) \][/tex]
2. Rewrite the fraction using the factored forms:
[tex]\[ \frac{81 t^2 + 27 t}{9 t^2 + 9 t} = \frac{27 t (3 t + 1)}{9 t (t + 1)} \][/tex]
3. Simplify the fraction by canceling out the common terms:
Both the numerator and the denominator contain the term [tex]\(t\)[/tex] (where [tex]\(t \neq 0\)[/tex]) and a constant factor that can be canceled out:
[tex]\[ \frac{27 t (3 t + 1)}{9 t (t + 1)} = \frac{27 (3 t + 1)}{9 (t + 1)} = 3 \cdot \frac{3 t + 1}{t + 1} \][/tex]
Thus, the expression simplifies to:
[tex]\[ \boxed{3 \cdot \frac{3 t + 1}{t + 1}} \][/tex]
So, for [tex]\(t \neq 0\)[/tex], the given expression [tex]\(\frac{81 t^2 + 27 t}{9 t^2 + 9 t}\)[/tex] is equivalent to [tex]\(\boxed{3 \cdot \frac{3 t + 1}{t + 1}}\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.