At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the given equation step by step, let's start by simplifying the expression inside the brackets and the braces.
Given equation:
[tex]\[ x - \{2 + [x - (3x - 1)]\} = 2 - x \][/tex]
First, simplify the innermost expression [tex]\( 3x - 1 \)[/tex]:
[tex]\[ x - (3x - 1) = x - 3x + 1 = -2x + 1 \][/tex]
Now substitute this back into the equation:
[tex]\[ x - \{2 + [ -2x + 1 ]\} = 2 - x \][/tex]
Next, simplify inside the brackets:
[tex]\[ 2 + [ -2x + 1 ] = 2 - 2x + 1 = 3 - 2x \][/tex]
Now substitute this back into the equation:
[tex]\[ x - \{3 - 2x\} = 2 - x \][/tex]
Simplify inside the braces:
[tex]\[ x - (3 - 2x) = x - 3 + 2x = 3x - 3 \][/tex]
So now our equation is:
[tex]\[ 3x - 3 = 2 - x \][/tex]
Combine like terms by adding [tex]\( x \)[/tex] to both sides:
[tex]\[ 3x + x - 3 = 2 \][/tex]
[tex]\[ 4x - 3 = 2 \][/tex]
Add 3 to both sides to isolate the term with x:
[tex]\[ 4x = 5 \][/tex]
Finally, divide both sides by 4 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{5}{4} \][/tex]
Thus, the value of [tex]\( x \)[/tex] is [tex]\(\boxed{\frac{5}{4}}\)[/tex].
Given equation:
[tex]\[ x - \{2 + [x - (3x - 1)]\} = 2 - x \][/tex]
First, simplify the innermost expression [tex]\( 3x - 1 \)[/tex]:
[tex]\[ x - (3x - 1) = x - 3x + 1 = -2x + 1 \][/tex]
Now substitute this back into the equation:
[tex]\[ x - \{2 + [ -2x + 1 ]\} = 2 - x \][/tex]
Next, simplify inside the brackets:
[tex]\[ 2 + [ -2x + 1 ] = 2 - 2x + 1 = 3 - 2x \][/tex]
Now substitute this back into the equation:
[tex]\[ x - \{3 - 2x\} = 2 - x \][/tex]
Simplify inside the braces:
[tex]\[ x - (3 - 2x) = x - 3 + 2x = 3x - 3 \][/tex]
So now our equation is:
[tex]\[ 3x - 3 = 2 - x \][/tex]
Combine like terms by adding [tex]\( x \)[/tex] to both sides:
[tex]\[ 3x + x - 3 = 2 \][/tex]
[tex]\[ 4x - 3 = 2 \][/tex]
Add 3 to both sides to isolate the term with x:
[tex]\[ 4x = 5 \][/tex]
Finally, divide both sides by 4 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{5}{4} \][/tex]
Thus, the value of [tex]\( x \)[/tex] is [tex]\(\boxed{\frac{5}{4}}\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.