Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

What is the end behavior of the function [tex]f(x) = -2 \sqrt[3]{x}[/tex]?

A. As [tex]x \rightarrow -\infty, f(x) \rightarrow 0[/tex], and as [tex]x \rightarrow \infty, f(x) \rightarrow 0[/tex].
B. As [tex]x \rightarrow 0, f(x) \rightarrow -\infty[/tex], and as [tex]x \rightarrow \infty, f(x) \rightarrow 0[/tex].
C. As [tex]x \rightarrow \infty, f(x) \rightarrow \infty[/tex], and as [tex]x \rightarrow -\infty, f(x) \rightarrow -\infty[/tex].
D. As [tex]x \rightarrow -\infty, f(x) \rightarrow \infty[/tex], and as [tex]x \rightarrow \infty, f(x) \rightarrow -\infty[/tex].


Sagot :

To determine the end behavior of the function [tex]\( f(x) = -2 \sqrt[3]{x} \)[/tex], let's analyze the behavior of [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] approaches positive infinity ([tex]\( +\infty \)[/tex]) and negative infinity ([tex]\( -\infty \)[/tex]).

1. As [tex]\( x \rightarrow +\infty \)[/tex]:
- [tex]\( \sqrt[3]{x} \)[/tex]: When [tex]\( x \)[/tex] becomes very large and positive, the cube root of [tex]\( x \)[/tex] ([tex]\( \sqrt[3]{x} \)[/tex]) also becomes very large and positive.
- Now, considering [tex]\( f(x) = -2 \sqrt[3]{x} \)[/tex]:
[tex]\[ f(x) \rightarrow -2 \times \text{(a large positive number)} \rightarrow -\infty \][/tex]
Therefore, as [tex]\( x \rightarrow +\infty \)[/tex], [tex]\( f(x) \rightarrow -\infty \)[/tex].

2. As [tex]\( x \rightarrow -\infty \)[/tex]:
- [tex]\( \sqrt[3]{x} \)[/tex]: When [tex]\( x \)[/tex] becomes very large and negative, the cube root of [tex]\( x \)[/tex] ([tex]\( \sqrt[3]{x} \)[/tex]) becomes very large and negative, because taking the cube root of a negative number yields a negative result.
- Now, considering [tex]\( f(x) = -2 \sqrt[3]{x} \)[/tex]:
[tex]\[ f(x) \rightarrow -2 \times \text{(a large negative number)} \rightarrow +\infty \][/tex]
Therefore, as [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( f(x) \rightarrow +\infty \)[/tex].

Based on this analysis, the correct end behavior for the function [tex]\( f(x) = -2 \sqrt[3]{x} \)[/tex] is:

- As [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( f(x) \rightarrow +\infty \)[/tex].
- As [tex]\( x \rightarrow +\infty \)[/tex], [tex]\( f(x) \rightarrow -\infty \)[/tex].

Thus, the answer is:
- As [tex]\( x \rightarrow -\infty, f(x) \rightarrow \infty \)[/tex].
- As [tex]\( x \rightarrow \infty, f(x) \rightarrow -\infty \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.