Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To simplify the expression [tex]\(\frac{2 x^{-4}}{3 x y}\)[/tex], let's proceed through the following steps:
1. Rewrite the expression using properties of exponents:
The given expression is:
[tex]\[ \frac{2 x^{-4}}{3 x y} \][/tex]
2. Combine the [tex]\(x\)[/tex] terms in the denominator and numerator:
We have [tex]\(x^{-4}\)[/tex] in the numerator and [tex]\(x\)[/tex] (which is [tex]\(x^1\)[/tex]) in the denominator. According to the properties of exponents, when dividing like bases, we subtract the exponents:
[tex]\[ \frac{x^{-4}}{x} = x^{-4 - 1} = x^{-5} \][/tex]
3. Substitute back into the original expression:
Now the expression becomes:
[tex]\[ \frac{2 x^{-5}}{3 y} \][/tex]
4. Simplify the expression further:
An exponent of [tex]\(-5\)[/tex] indicates the reciprocal with a positive exponent:
[tex]\[ x^{-5} = \frac{1}{x^5} \][/tex]
5. Combine this back into the fraction:
[tex]\[ \frac{2 x^{-5}}{3 y} = \frac{2 \cdot \frac{1}{x^5}}{3 y} = \frac{2}{3 x^5 y} \][/tex]
So the simplified form of the given expression is:
[tex]\[ \frac{2}{3 x^5 y} \][/tex]
Now, let’s compare this with the given choices:
A. [tex]\(\frac{4}{x^3 y^6}\)[/tex] - This is not equivalent.
B. [tex]\(4 y^2\)[/tex] - This is not equivalent.
C. [tex]\(\frac{4 x^3 y^2}{3}\)[/tex] - This is not equivalent.
D. [tex]\(\frac{2}{3 x^5 y}\)[/tex] - This matches our simplified result.
Therefore, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
1. Rewrite the expression using properties of exponents:
The given expression is:
[tex]\[ \frac{2 x^{-4}}{3 x y} \][/tex]
2. Combine the [tex]\(x\)[/tex] terms in the denominator and numerator:
We have [tex]\(x^{-4}\)[/tex] in the numerator and [tex]\(x\)[/tex] (which is [tex]\(x^1\)[/tex]) in the denominator. According to the properties of exponents, when dividing like bases, we subtract the exponents:
[tex]\[ \frac{x^{-4}}{x} = x^{-4 - 1} = x^{-5} \][/tex]
3. Substitute back into the original expression:
Now the expression becomes:
[tex]\[ \frac{2 x^{-5}}{3 y} \][/tex]
4. Simplify the expression further:
An exponent of [tex]\(-5\)[/tex] indicates the reciprocal with a positive exponent:
[tex]\[ x^{-5} = \frac{1}{x^5} \][/tex]
5. Combine this back into the fraction:
[tex]\[ \frac{2 x^{-5}}{3 y} = \frac{2 \cdot \frac{1}{x^5}}{3 y} = \frac{2}{3 x^5 y} \][/tex]
So the simplified form of the given expression is:
[tex]\[ \frac{2}{3 x^5 y} \][/tex]
Now, let’s compare this with the given choices:
A. [tex]\(\frac{4}{x^3 y^6}\)[/tex] - This is not equivalent.
B. [tex]\(4 y^2\)[/tex] - This is not equivalent.
C. [tex]\(\frac{4 x^3 y^2}{3}\)[/tex] - This is not equivalent.
D. [tex]\(\frac{2}{3 x^5 y}\)[/tex] - This matches our simplified result.
Therefore, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.