Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the inequality [tex]\(-2|2x + 3| > 4\)[/tex], let's start by analyzing it step-by-step:
1. We have the inequality:
[tex]\[ -2|2x + 3| > 4 \][/tex]
2. Divide both sides by [tex]\(-2\)[/tex] and remember to flip the inequality sign since we are dividing by a negative number:
[tex]\[ |2x + 3| < -2 \][/tex]
3. Here, we are comparing the absolute value expression [tex]\(|2x + 3|\)[/tex] with [tex]\(-2\)[/tex]. However, the absolute value of any expression is always non-negative, meaning it is either zero or positive. Therefore, [tex]\(|2x + 3|\)[/tex] can never be less than a negative number:
[tex]\[ |2x + 3| \geq 0 \quad \text{for all real numbers } x \][/tex]
4. Since no real number [tex]\(x\)[/tex] can satisfy the inequality [tex]\(|2x + 3| < -2\)[/tex], it means there are no solutions to the given inequality.
So, the correct answer is:
[tex]\[ \text{No solution} \][/tex]
1. We have the inequality:
[tex]\[ -2|2x + 3| > 4 \][/tex]
2. Divide both sides by [tex]\(-2\)[/tex] and remember to flip the inequality sign since we are dividing by a negative number:
[tex]\[ |2x + 3| < -2 \][/tex]
3. Here, we are comparing the absolute value expression [tex]\(|2x + 3|\)[/tex] with [tex]\(-2\)[/tex]. However, the absolute value of any expression is always non-negative, meaning it is either zero or positive. Therefore, [tex]\(|2x + 3|\)[/tex] can never be less than a negative number:
[tex]\[ |2x + 3| \geq 0 \quad \text{for all real numbers } x \][/tex]
4. Since no real number [tex]\(x\)[/tex] can satisfy the inequality [tex]\(|2x + 3| < -2\)[/tex], it means there are no solutions to the given inequality.
So, the correct answer is:
[tex]\[ \text{No solution} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.