Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine whether the point [tex]\((2, -2)\)[/tex] lies on the circle centered at [tex]\((-1, 2)\)[/tex] with a diameter of 10 units, let's go through the necessary steps to verify Amit's claims and calculations.
First, given that the diameter of the circle is 10 units, the radius [tex]\( r \)[/tex] is half of the diameter:
[tex]\[ r = \frac{10}{2} = 5 \text{ units} \][/tex]
Next, we need to calculate the distance between the center of the circle [tex]\((-1, 2)\)[/tex] and the point [tex]\((2, -2)\)[/tex]. The distance formula between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Applying the coordinates of the center [tex]\((-1, 2)\)[/tex] and the point [tex]\((2, -2)\)[/tex]:
[tex]\[ d = \sqrt{(2 - (-1))^2 + (-2 - 2)^2} \][/tex]
[tex]\[ d = \sqrt{(2 + 1)^2 + (-2 - 2)^2} \][/tex]
[tex]\[ d = \sqrt{3^2 + (-4)^2} \][/tex]
[tex]\[ d = \sqrt{9 + 16} \][/tex]
[tex]\[ d = \sqrt{25} \][/tex]
[tex]\[ d = 5 \text{ units} \][/tex]
Since the calculated distance (5 units) is equal to the radius of the circle (5 units), [tex]\((2, -2)\)[/tex] does indeed lie on the circle.
Let's now analyze Amit's work and the statements:
Amit initially tried to calculate the distance:
[tex]\[ \sqrt{(-1 - 2)^2 + (2 - (-2))^2} \][/tex]
But incorrectly calculated the next step:
[tex]\[ \sqrt{(-3)^2 + (4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]
Thus, the correct calculation leads to a distance of 5 units, which matches the radius. This confirms that Amit's final conclusion that the point [tex]\((2, -2)\)[/tex] is not on the circle is incorrect.
Given the information:
- No, he should have used the origin as the center of the circle. (Incorrect, the center is correctly used as [tex]\((-1, 2)\)[/tex]).
- No, the radius is 10 units, not 5 units. (Incorrect, the radius is 5 units).
- No, he did not calculate the distance correctly. (Correct, as explained, Amit's calculations were incorrect).
- Yes, the distance from the center to [tex]\((2,-2)\)[/tex] is not the same as the radius. (Incorrect, the distance is indeed the same as the radius).
Therefore, the correct statement is:
[tex]\[ \text{No, he did not calculate the distance correctly.} \][/tex]
First, given that the diameter of the circle is 10 units, the radius [tex]\( r \)[/tex] is half of the diameter:
[tex]\[ r = \frac{10}{2} = 5 \text{ units} \][/tex]
Next, we need to calculate the distance between the center of the circle [tex]\((-1, 2)\)[/tex] and the point [tex]\((2, -2)\)[/tex]. The distance formula between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Applying the coordinates of the center [tex]\((-1, 2)\)[/tex] and the point [tex]\((2, -2)\)[/tex]:
[tex]\[ d = \sqrt{(2 - (-1))^2 + (-2 - 2)^2} \][/tex]
[tex]\[ d = \sqrt{(2 + 1)^2 + (-2 - 2)^2} \][/tex]
[tex]\[ d = \sqrt{3^2 + (-4)^2} \][/tex]
[tex]\[ d = \sqrt{9 + 16} \][/tex]
[tex]\[ d = \sqrt{25} \][/tex]
[tex]\[ d = 5 \text{ units} \][/tex]
Since the calculated distance (5 units) is equal to the radius of the circle (5 units), [tex]\((2, -2)\)[/tex] does indeed lie on the circle.
Let's now analyze Amit's work and the statements:
Amit initially tried to calculate the distance:
[tex]\[ \sqrt{(-1 - 2)^2 + (2 - (-2))^2} \][/tex]
But incorrectly calculated the next step:
[tex]\[ \sqrt{(-3)^2 + (4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]
Thus, the correct calculation leads to a distance of 5 units, which matches the radius. This confirms that Amit's final conclusion that the point [tex]\((2, -2)\)[/tex] is not on the circle is incorrect.
Given the information:
- No, he should have used the origin as the center of the circle. (Incorrect, the center is correctly used as [tex]\((-1, 2)\)[/tex]).
- No, the radius is 10 units, not 5 units. (Incorrect, the radius is 5 units).
- No, he did not calculate the distance correctly. (Correct, as explained, Amit's calculations were incorrect).
- Yes, the distance from the center to [tex]\((2,-2)\)[/tex] is not the same as the radius. (Incorrect, the distance is indeed the same as the radius).
Therefore, the correct statement is:
[tex]\[ \text{No, he did not calculate the distance correctly.} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.