At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's solve the problem step-by-step.
### Equation of the Ellipse
The given equation of the ellipse is:
[tex]\[ \frac{x^2}{100} + \frac{y^2}{9} = 1 \][/tex]
This equation is in the standard form of an ellipse centered at the origin, [tex]\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)[/tex].
In this case:
[tex]\[ a^2 = 100 \][/tex]
[tex]\[ b^2 = 9 \][/tex]
### Finding [tex]\(a\)[/tex] and [tex]\(b\)[/tex]
To find [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ a = \sqrt{100} = 10 \][/tex]
[tex]\[ b = \sqrt{9} = 3 \][/tex]
### Vertices
Vertices of the ellipse are located at [tex]\((\pm a, 0)\)[/tex]:
[tex]\[ (10, 0) \quad \text{and} \quad (-10, 0) \][/tex]
So, the vertices are:
[tex]\[ [(10, 0), (-10, 0)] \][/tex]
### Foci
The foci are located at [tex]\((\pm c, 0)\)[/tex], where [tex]\(c\)[/tex] is determined by:
[tex]\[ c = \sqrt{a^2 - b^2} \][/tex]
First, calculate [tex]\(a^2 - b^2\)[/tex]:
[tex]\[ a^2 - b^2 = 100 - 9 = 91 \][/tex]
Then:
[tex]\[ c = \sqrt{91} \approx 9.539392014169456 \][/tex]
So, the foci are:
[tex]\[ (9.539392014169456, 0) \quad \text{and} \quad (-9.539392014169456, 0) \][/tex]
Hence, the coordinates of the foci are:
[tex]\[ [(9.539392014169456, 0), (-9.539392014169456, 0)] \][/tex]
### Endpoints of the Minor Axis
The endpoints of the minor axis are located at [tex]\((0, \pm b)\)[/tex]:
[tex]\[ (0, 3) \quad \text{and} \quad (0, -3) \][/tex]
Thus, the endpoints of the minor axis are:
[tex]\[ [(0, 3), (0, -3)] \][/tex]
### Final Results
- Vertices:
[tex]\[ [(10, 0), (-10, 0)] \][/tex]
- Foci:
[tex]\[ [(9.539392014169456, 0), (-9.539392014169456, 0)] \][/tex]
- Endpoints of the Minor Axis:
[tex]\[ [(0, 3), (0, -3)] \][/tex]
### Equation of the Ellipse
The given equation of the ellipse is:
[tex]\[ \frac{x^2}{100} + \frac{y^2}{9} = 1 \][/tex]
This equation is in the standard form of an ellipse centered at the origin, [tex]\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)[/tex].
In this case:
[tex]\[ a^2 = 100 \][/tex]
[tex]\[ b^2 = 9 \][/tex]
### Finding [tex]\(a\)[/tex] and [tex]\(b\)[/tex]
To find [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ a = \sqrt{100} = 10 \][/tex]
[tex]\[ b = \sqrt{9} = 3 \][/tex]
### Vertices
Vertices of the ellipse are located at [tex]\((\pm a, 0)\)[/tex]:
[tex]\[ (10, 0) \quad \text{and} \quad (-10, 0) \][/tex]
So, the vertices are:
[tex]\[ [(10, 0), (-10, 0)] \][/tex]
### Foci
The foci are located at [tex]\((\pm c, 0)\)[/tex], where [tex]\(c\)[/tex] is determined by:
[tex]\[ c = \sqrt{a^2 - b^2} \][/tex]
First, calculate [tex]\(a^2 - b^2\)[/tex]:
[tex]\[ a^2 - b^2 = 100 - 9 = 91 \][/tex]
Then:
[tex]\[ c = \sqrt{91} \approx 9.539392014169456 \][/tex]
So, the foci are:
[tex]\[ (9.539392014169456, 0) \quad \text{and} \quad (-9.539392014169456, 0) \][/tex]
Hence, the coordinates of the foci are:
[tex]\[ [(9.539392014169456, 0), (-9.539392014169456, 0)] \][/tex]
### Endpoints of the Minor Axis
The endpoints of the minor axis are located at [tex]\((0, \pm b)\)[/tex]:
[tex]\[ (0, 3) \quad \text{and} \quad (0, -3) \][/tex]
Thus, the endpoints of the minor axis are:
[tex]\[ [(0, 3), (0, -3)] \][/tex]
### Final Results
- Vertices:
[tex]\[ [(10, 0), (-10, 0)] \][/tex]
- Foci:
[tex]\[ [(9.539392014169456, 0), (-9.539392014169456, 0)] \][/tex]
- Endpoints of the Minor Axis:
[tex]\[ [(0, 3), (0, -3)] \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.