Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's analyze the given sequence of numbers: [tex]\(\frac{3}{8}, \frac{3}{4}, 1 \frac{1}{8}, 1 \frac{1}{2}, 1 \frac{7}{8}, \ldots\)[/tex].
To understand the nature of this sequence, we first convert the mixed fractions to improper fractions:
1. [tex]\( \frac{3}{8} \)[/tex]
2. [tex]\( \frac{3}{4} = \frac{6}{8} \)[/tex]
3. [tex]\( 1 \frac{1}{8} = \frac{9}{8} \)[/tex]
4. [tex]\( 1 \frac{1}{2} = \frac{12}{8} \)[/tex]
5. [tex]\( 1 \frac{7}{8} = \frac{15}{8} \)[/tex]
Next, we will determine the differences between each consecutive term to check for arithmetic properties:
1. Difference between [tex]\(\frac{3}{4}\)[/tex] and [tex]\(\frac{3}{8}\)[/tex]:
[tex]\[ \frac{6}{8} - \frac{3}{8} = \frac{3}{8} \][/tex]
2. Difference between [tex]\(1 \frac{1}{8}\)[/tex] and [tex]\(\frac{3}{4}\)[/tex]:
[tex]\[ \frac{9}{8} - \frac{6}{8} = \frac{3}{8} \][/tex]
3. Difference between [tex]\(1 \frac{1}{2}\)[/tex] and [tex]\(1 \frac{1}{8}\)[/tex]:
[tex]\[ \frac{12}{8} - \frac{9}{8} = \frac{3}{8} \][/tex]
4. Difference between [tex]\(1 \frac{7}{8}\)[/tex] and [tex]\(1 \frac{1}{2}\)[/tex]:
[tex]\[ \frac{15}{8} - \frac{12}{8} = \frac{3}{8} \][/tex]
We observe that each consecutive term in the sequence has a common difference of [tex]\(\frac{3}{8}\)[/tex].
However, earlier results showed the actual difference is [tex]\(\frac{3}{8} = 0.375\)[/tex] consistently, but verifying this detail with the required precision confirms this unique sequence properties which mention consistent equal increments.
Upon further review of the options:
1. The statement "The sequence is recursive, where each term is [tex]\(\frac{1}{4}\)[/tex] greater than its preceding term" is incorrect.
2. The statement "The sequence is recursive and can be represented by the function [tex]\(f(n+1) = f(n) + \frac{3}{8}\)[/tex]" accurately describes the pattern of differences.
3. The statement "The sequence is arithmetic, where each pair of terms has a constant difference of [tex]\(\frac{3}{4}\)[/tex]" is incorrect (the common difference is [tex]\(\frac{3}{8}\)[/tex]).
4. The statement "The sequence is arithmetic and can be represented by the function [tex]\(f(n+1) = f(n)\left(\frac{3}{8}\right)\)[/tex]" is incorrect as it suggests a multiplicative pattern instead of additive.
Thus,
- The correct description of the sequence fits the second statement: "The sequence is recursive and can be represented by the function [tex]\(f(n+1) = f(n) + \frac{3}{8}\)[/tex]".
To understand the nature of this sequence, we first convert the mixed fractions to improper fractions:
1. [tex]\( \frac{3}{8} \)[/tex]
2. [tex]\( \frac{3}{4} = \frac{6}{8} \)[/tex]
3. [tex]\( 1 \frac{1}{8} = \frac{9}{8} \)[/tex]
4. [tex]\( 1 \frac{1}{2} = \frac{12}{8} \)[/tex]
5. [tex]\( 1 \frac{7}{8} = \frac{15}{8} \)[/tex]
Next, we will determine the differences between each consecutive term to check for arithmetic properties:
1. Difference between [tex]\(\frac{3}{4}\)[/tex] and [tex]\(\frac{3}{8}\)[/tex]:
[tex]\[ \frac{6}{8} - \frac{3}{8} = \frac{3}{8} \][/tex]
2. Difference between [tex]\(1 \frac{1}{8}\)[/tex] and [tex]\(\frac{3}{4}\)[/tex]:
[tex]\[ \frac{9}{8} - \frac{6}{8} = \frac{3}{8} \][/tex]
3. Difference between [tex]\(1 \frac{1}{2}\)[/tex] and [tex]\(1 \frac{1}{8}\)[/tex]:
[tex]\[ \frac{12}{8} - \frac{9}{8} = \frac{3}{8} \][/tex]
4. Difference between [tex]\(1 \frac{7}{8}\)[/tex] and [tex]\(1 \frac{1}{2}\)[/tex]:
[tex]\[ \frac{15}{8} - \frac{12}{8} = \frac{3}{8} \][/tex]
We observe that each consecutive term in the sequence has a common difference of [tex]\(\frac{3}{8}\)[/tex].
However, earlier results showed the actual difference is [tex]\(\frac{3}{8} = 0.375\)[/tex] consistently, but verifying this detail with the required precision confirms this unique sequence properties which mention consistent equal increments.
Upon further review of the options:
1. The statement "The sequence is recursive, where each term is [tex]\(\frac{1}{4}\)[/tex] greater than its preceding term" is incorrect.
2. The statement "The sequence is recursive and can be represented by the function [tex]\(f(n+1) = f(n) + \frac{3}{8}\)[/tex]" accurately describes the pattern of differences.
3. The statement "The sequence is arithmetic, where each pair of terms has a constant difference of [tex]\(\frac{3}{4}\)[/tex]" is incorrect (the common difference is [tex]\(\frac{3}{8}\)[/tex]).
4. The statement "The sequence is arithmetic and can be represented by the function [tex]\(f(n+1) = f(n)\left(\frac{3}{8}\right)\)[/tex]" is incorrect as it suggests a multiplicative pattern instead of additive.
Thus,
- The correct description of the sequence fits the second statement: "The sequence is recursive and can be represented by the function [tex]\(f(n+1) = f(n) + \frac{3}{8}\)[/tex]".
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.