Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's carefully go through the student's steps and identify the algebraic error. We will then state the correct approach to solve for [tex]\( r \)[/tex].
### Given Steps by the Student:
1. [tex]\( A = P(1 + rt) \)[/tex]
2. [tex]\( A = P + rt \)[/tex] (student's interpretation)
3. [tex]\( A - P = rt \)[/tex]
4. [tex]\( r = \frac{A - P}{t} \)[/tex]
### Discussion of the Algebraic Error:
Step 2 is where the student made an algebraic error. The correct approach to distribute [tex]\( P \)[/tex] in the equation [tex]\( A = P(1 + rt) \)[/tex] should preserve the multiplication of [tex]\( P \)[/tex] with the entire expression in the parentheses.
### Correction Breakdown:
Let's correctly solve for [tex]\( r \)[/tex] step-by-step:
1. Start with the correct formula for the simple interest:
[tex]\[ A = P(1 + rt) \][/tex]
2. Divide both sides of the equation by [tex]\( P \)[/tex]:
[tex]\[ \frac{A}{P} = 1 + rt \][/tex]
3. Subtract 1 from both sides to isolate the term with [tex]\( r \)[/tex]:
[tex]\[ \frac{A}{P} - 1 = rt \][/tex]
4. Finally, divide both sides by [tex]\( t \)[/tex] to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{\left(\frac{A}{P} - 1\right)}{t} \][/tex]
or equivalently,
[tex]\[ r = \frac{A/P - 1}{t} \][/tex]
which simplifies to:
[tex]\[ r = \frac{A - P}{Pt} \][/tex]
### Correct Equation for [tex]\( r \)[/tex]:
The correct equation to solve for [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{\left(\frac{A}{P} - 1\right)}{t} \][/tex]
### Summary of the Student's Error:
The student incorrectly simplified the expression [tex]\( P(1 + rt) \)[/tex] as [tex]\( P + rt \)[/tex], which neglects the proper distribution of [tex]\( P \)[/tex]. The correct interpretation involves dividing [tex]\( A \)[/tex] by [tex]\( P \)[/tex] first, before isolating [tex]\( r \)[/tex].
### Algebraic Error Explanation:
The precise algebraic error occurred in the student's Step 2:
[tex]\[ A = P + rt \][/tex]
This should have been:
[tex]\[ \frac{A}{P} = 1 + rt \][/tex]
### Final Corrected Step:
To correct the student's final step, the equation [tex]\( r = \frac{A - P}{t} \)[/tex] needs to be modified to include proper distribution and isolation of [tex]\( r \)[/tex] as follows:
[tex]\[ r = \frac{A/P - 1}{t} \][/tex]
This ensures the correct formula for solving [tex]\( r \)[/tex] from the initial simple interest equation.
So the correct statement for the algebraic error and the correct equation is:
Algebraic error: Error: A = P + rt is incorrect; the correct step after distributing [tex]\( P \)[/tex] should be:
[tex]\[ A = P(1 + rt) \][/tex]
Correct modification of the equation:
[tex]\[ r = \frac{(A / P) - 1}{t} \][/tex]
This approach accurately isolates [tex]\( r \)[/tex] in the context of the given simple interest formula.
### Given Steps by the Student:
1. [tex]\( A = P(1 + rt) \)[/tex]
2. [tex]\( A = P + rt \)[/tex] (student's interpretation)
3. [tex]\( A - P = rt \)[/tex]
4. [tex]\( r = \frac{A - P}{t} \)[/tex]
### Discussion of the Algebraic Error:
Step 2 is where the student made an algebraic error. The correct approach to distribute [tex]\( P \)[/tex] in the equation [tex]\( A = P(1 + rt) \)[/tex] should preserve the multiplication of [tex]\( P \)[/tex] with the entire expression in the parentheses.
### Correction Breakdown:
Let's correctly solve for [tex]\( r \)[/tex] step-by-step:
1. Start with the correct formula for the simple interest:
[tex]\[ A = P(1 + rt) \][/tex]
2. Divide both sides of the equation by [tex]\( P \)[/tex]:
[tex]\[ \frac{A}{P} = 1 + rt \][/tex]
3. Subtract 1 from both sides to isolate the term with [tex]\( r \)[/tex]:
[tex]\[ \frac{A}{P} - 1 = rt \][/tex]
4. Finally, divide both sides by [tex]\( t \)[/tex] to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{\left(\frac{A}{P} - 1\right)}{t} \][/tex]
or equivalently,
[tex]\[ r = \frac{A/P - 1}{t} \][/tex]
which simplifies to:
[tex]\[ r = \frac{A - P}{Pt} \][/tex]
### Correct Equation for [tex]\( r \)[/tex]:
The correct equation to solve for [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{\left(\frac{A}{P} - 1\right)}{t} \][/tex]
### Summary of the Student's Error:
The student incorrectly simplified the expression [tex]\( P(1 + rt) \)[/tex] as [tex]\( P + rt \)[/tex], which neglects the proper distribution of [tex]\( P \)[/tex]. The correct interpretation involves dividing [tex]\( A \)[/tex] by [tex]\( P \)[/tex] first, before isolating [tex]\( r \)[/tex].
### Algebraic Error Explanation:
The precise algebraic error occurred in the student's Step 2:
[tex]\[ A = P + rt \][/tex]
This should have been:
[tex]\[ \frac{A}{P} = 1 + rt \][/tex]
### Final Corrected Step:
To correct the student's final step, the equation [tex]\( r = \frac{A - P}{t} \)[/tex] needs to be modified to include proper distribution and isolation of [tex]\( r \)[/tex] as follows:
[tex]\[ r = \frac{A/P - 1}{t} \][/tex]
This ensures the correct formula for solving [tex]\( r \)[/tex] from the initial simple interest equation.
So the correct statement for the algebraic error and the correct equation is:
Algebraic error: Error: A = P + rt is incorrect; the correct step after distributing [tex]\( P \)[/tex] should be:
[tex]\[ A = P(1 + rt) \][/tex]
Correct modification of the equation:
[tex]\[ r = \frac{(A / P) - 1}{t} \][/tex]
This approach accurately isolates [tex]\( r \)[/tex] in the context of the given simple interest formula.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.