Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's find the antiderivative of [tex]\(\int 7x^6 (x^7 + 9)^3 \, dx\)[/tex] using substitution.
First, we make the substitution [tex]\( u = x^7 + 9 \)[/tex].
Then, we find the differential [tex]\( du \)[/tex].
To do this, we need to take the derivative of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ u = x^7 + 9 \][/tex]
Differentiating both sides with respect to [tex]\( x \)[/tex], we get:
[tex]\[ \frac{du}{dx} = 7x^6 \][/tex]
Multiplying both sides by [tex]\( dx \)[/tex]:
[tex]\[ du = 7x^6 \, dx \][/tex]
This tells us that [tex]\( 7x^6 \, dx \)[/tex] is equivalent to [tex]\( du \)[/tex].
Next, we substitute [tex]\( u \)[/tex] and [tex]\( du \)[/tex] into the integral:
[tex]\[ \int 7x^6 (x^7 + 9)^3 \, dx \][/tex]
becomes:
[tex]\[ \int (x^7 + 9)^3 \cdot 7x^6 \, dx \][/tex]
which simplifies to:
[tex]\[ \int u^3 \, du \][/tex]
Now we need to find the antiderivative of [tex]\( u^3 \)[/tex]:
[tex]\[ \int u^3 \, du = \frac{u^4}{4} + C \][/tex]
Finally, we substitute back [tex]\( u = x^7 + 9 \)[/tex] into our result to get the antiderivative in terms of [tex]\( x \)[/tex]:
[tex]\[ \frac{u^4}{4} + C = \frac{(x^7 + 9)^4}{4} + C \][/tex]
Therefore, the antiderivative of [tex]\(\int 7x^6 (x^7 + 9)^3 \, dx\)[/tex] is:
[tex]\[ \boxed{\frac{(x^7 + 9)^4}{4} + C} \][/tex]
First, we make the substitution [tex]\( u = x^7 + 9 \)[/tex].
Then, we find the differential [tex]\( du \)[/tex].
To do this, we need to take the derivative of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ u = x^7 + 9 \][/tex]
Differentiating both sides with respect to [tex]\( x \)[/tex], we get:
[tex]\[ \frac{du}{dx} = 7x^6 \][/tex]
Multiplying both sides by [tex]\( dx \)[/tex]:
[tex]\[ du = 7x^6 \, dx \][/tex]
This tells us that [tex]\( 7x^6 \, dx \)[/tex] is equivalent to [tex]\( du \)[/tex].
Next, we substitute [tex]\( u \)[/tex] and [tex]\( du \)[/tex] into the integral:
[tex]\[ \int 7x^6 (x^7 + 9)^3 \, dx \][/tex]
becomes:
[tex]\[ \int (x^7 + 9)^3 \cdot 7x^6 \, dx \][/tex]
which simplifies to:
[tex]\[ \int u^3 \, du \][/tex]
Now we need to find the antiderivative of [tex]\( u^3 \)[/tex]:
[tex]\[ \int u^3 \, du = \frac{u^4}{4} + C \][/tex]
Finally, we substitute back [tex]\( u = x^7 + 9 \)[/tex] into our result to get the antiderivative in terms of [tex]\( x \)[/tex]:
[tex]\[ \frac{u^4}{4} + C = \frac{(x^7 + 9)^4}{4} + C \][/tex]
Therefore, the antiderivative of [tex]\(\int 7x^6 (x^7 + 9)^3 \, dx\)[/tex] is:
[tex]\[ \boxed{\frac{(x^7 + 9)^4}{4} + C} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.