Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's prove that the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] has roots given by [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex].
To do this, we will derive the quadratic formula step-by-step.
### Step 1: Write the General Form
Consider the quadratic equation:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
### Step 2: Normalize the Equation
If [tex]\( a \neq 0 \)[/tex], we can divide the entire equation by [tex]\( a \)[/tex] to simplify:
[tex]\[ x^2 + \frac{b}{a} x + \frac{c}{a} = 0 \][/tex]
### Step 3: Complete the Square
To complete the square, we need to make the left side of the equation a perfect square trinomial. Let's isolate the constant term:
[tex]\[ x^2 + \frac{b}{a} x = -\frac{c}{a} \][/tex]
Next, add and subtract [tex]\((\frac{b}{2a})^2\)[/tex] on the left-hand side:
[tex]\[ x^2 + \frac{b}{a} x + \left(\frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} \][/tex]
This simplifies to:
[tex]\[ \left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} \][/tex]
### Step 4: Simplify the Equation
Combine the terms involving [tex]\( x \)[/tex]:
[tex]\[ \left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} \][/tex]
Now, get a common denominator on the right-hand side and simplify:
[tex]\[ \left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \][/tex]
### Step 5: Solve for [tex]\( x \)[/tex]
Take the square root of both sides:
[tex]\[ x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a} \][/tex]
Isolate [tex]\( x \)[/tex] by subtracting [tex]\(\frac{b}{2a}\)[/tex] from both sides:
[tex]\[ x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} \][/tex]
### Step 6: Combine the Terms
Combine the terms on the right-hand side under a common denominator:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Thus, we have derived that the roots of the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] are given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
### Conclusion:
If [tex]\( a = 1 \)[/tex], [tex]\( b = -3 \)[/tex], and [tex]\( c = 2 \)[/tex], then substituting these values into the quadratic formula gives:
[tex]\[ x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(2)}}{2(1)} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{9 - 8}}{2} \][/tex]
[tex]\[ x = \frac{3 \pm 1}{2} \][/tex]
Thus, the roots are:
[tex]\[ x_1 = \frac{3 + 1}{2} = 2 \][/tex]
[tex]\[ x_2 = \frac{3 - 1}{2} = 1 \][/tex]
The discriminant [tex]\( \Delta \)[/tex] here is [tex]\( b^2 - 4ac = 1 \)[/tex], confirming that the roots indeed are [tex]\( 2.0 \)[/tex] and [tex]\( 1.0 \)[/tex].
To do this, we will derive the quadratic formula step-by-step.
### Step 1: Write the General Form
Consider the quadratic equation:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
### Step 2: Normalize the Equation
If [tex]\( a \neq 0 \)[/tex], we can divide the entire equation by [tex]\( a \)[/tex] to simplify:
[tex]\[ x^2 + \frac{b}{a} x + \frac{c}{a} = 0 \][/tex]
### Step 3: Complete the Square
To complete the square, we need to make the left side of the equation a perfect square trinomial. Let's isolate the constant term:
[tex]\[ x^2 + \frac{b}{a} x = -\frac{c}{a} \][/tex]
Next, add and subtract [tex]\((\frac{b}{2a})^2\)[/tex] on the left-hand side:
[tex]\[ x^2 + \frac{b}{a} x + \left(\frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} \][/tex]
This simplifies to:
[tex]\[ \left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} \][/tex]
### Step 4: Simplify the Equation
Combine the terms involving [tex]\( x \)[/tex]:
[tex]\[ \left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} \][/tex]
Now, get a common denominator on the right-hand side and simplify:
[tex]\[ \left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \][/tex]
### Step 5: Solve for [tex]\( x \)[/tex]
Take the square root of both sides:
[tex]\[ x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a} \][/tex]
Isolate [tex]\( x \)[/tex] by subtracting [tex]\(\frac{b}{2a}\)[/tex] from both sides:
[tex]\[ x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} \][/tex]
### Step 6: Combine the Terms
Combine the terms on the right-hand side under a common denominator:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Thus, we have derived that the roots of the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] are given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
### Conclusion:
If [tex]\( a = 1 \)[/tex], [tex]\( b = -3 \)[/tex], and [tex]\( c = 2 \)[/tex], then substituting these values into the quadratic formula gives:
[tex]\[ x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(2)}}{2(1)} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{9 - 8}}{2} \][/tex]
[tex]\[ x = \frac{3 \pm 1}{2} \][/tex]
Thus, the roots are:
[tex]\[ x_1 = \frac{3 + 1}{2} = 2 \][/tex]
[tex]\[ x_2 = \frac{3 - 1}{2} = 1 \][/tex]
The discriminant [tex]\( \Delta \)[/tex] here is [tex]\( b^2 - 4ac = 1 \)[/tex], confirming that the roots indeed are [tex]\( 2.0 \)[/tex] and [tex]\( 1.0 \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.