Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the quadratic equation [tex]\(x^2 + 2x + 1 = 0\)[/tex], we can use the quadratic formula which states that for any quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex], the solutions for [tex]\(x\)[/tex] are given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Step-by-step, we apply this formula to our specific equation [tex]\(x^2 + 2x + 1 = 0\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = 2\)[/tex], and [tex]\(c = 1\)[/tex].
1. Calculate the discriminant:
The discriminant ([tex]\(\Delta\)[/tex]) is given by [tex]\(b^2 - 4ac\)[/tex]. Substituting the values, we get:
[tex]\[ \Delta = 2^2 - 4(1)(1) \][/tex]
[tex]\[ \Delta = 4 - 4 \][/tex]
[tex]\[ \Delta = 0 \][/tex]
The discriminant is 0, which indicates that the quadratic equation has one real repeated root.
2. Calculate the solutions:
Using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{\Delta}}{2a} \)[/tex], we substitute the values [tex]\(a = 1\)[/tex], [tex]\(b = 2\)[/tex], and [tex]\(\Delta = 0\)[/tex]:
[tex]\[ x = \frac{-2 \pm \sqrt{0}}{2 \times 1} \][/tex]
This simplifies to:
[tex]\[ x = \frac{-2 \pm 0}{2} \][/tex]
[tex]\[ x = \frac{-2}{2} \][/tex]
[tex]\[ x = -1 \][/tex]
Since the discriminant is 0, the two solutions are not distinct and both are [tex]\(x = -1\)[/tex].
Therefore, the quadratic equation [tex]\(x^2 + 2x + 1 = 0\)[/tex] has a discriminant of 0, and the single (repeated) solution is:
[tex]\[ x = -1 \][/tex]
Thus, the roots of the equation are:
[tex]\[ x_1 = -1 \quad \text{and} \quad x_2 = -1 \][/tex]
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Step-by-step, we apply this formula to our specific equation [tex]\(x^2 + 2x + 1 = 0\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = 2\)[/tex], and [tex]\(c = 1\)[/tex].
1. Calculate the discriminant:
The discriminant ([tex]\(\Delta\)[/tex]) is given by [tex]\(b^2 - 4ac\)[/tex]. Substituting the values, we get:
[tex]\[ \Delta = 2^2 - 4(1)(1) \][/tex]
[tex]\[ \Delta = 4 - 4 \][/tex]
[tex]\[ \Delta = 0 \][/tex]
The discriminant is 0, which indicates that the quadratic equation has one real repeated root.
2. Calculate the solutions:
Using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{\Delta}}{2a} \)[/tex], we substitute the values [tex]\(a = 1\)[/tex], [tex]\(b = 2\)[/tex], and [tex]\(\Delta = 0\)[/tex]:
[tex]\[ x = \frac{-2 \pm \sqrt{0}}{2 \times 1} \][/tex]
This simplifies to:
[tex]\[ x = \frac{-2 \pm 0}{2} \][/tex]
[tex]\[ x = \frac{-2}{2} \][/tex]
[tex]\[ x = -1 \][/tex]
Since the discriminant is 0, the two solutions are not distinct and both are [tex]\(x = -1\)[/tex].
Therefore, the quadratic equation [tex]\(x^2 + 2x + 1 = 0\)[/tex] has a discriminant of 0, and the single (repeated) solution is:
[tex]\[ x = -1 \][/tex]
Thus, the roots of the equation are:
[tex]\[ x_1 = -1 \quad \text{and} \quad x_2 = -1 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.