Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the revenue function and the flat fee for delivery, we start with the given equation:
[tex]\[ y - 3000 = 0.25(x - 10000) \][/tex]
1. Simplify the given equation to get the revenue function:
Begin by distributing the [tex]$0.25$[/tex] on the right-hand side:
[tex]\[ y - 3000 = 0.25x - 2500 \][/tex]
Next, isolate [tex]$y$[/tex] by adding [tex]$3000$[/tex] to both sides of the equation:
[tex]\[ y = 0.25x - 2500 + 3000 \][/tex]
Simplify the right-hand side:
[tex]\[ y = 0.25x + 500 \][/tex]
Thus, the revenue function in terms of the number of tiles sold ([tex]$x$[/tex]) is:
[tex]\[ y = 0.25x + 500 \][/tex]
2. Identify the flat fee for delivery:
The flat fee for delivery is the constant term in the revenue function (the term that does not depend on [tex]$x$[/tex]). In the revenue function [tex]$y = 0.25x + 500$[/tex], the term [tex]$500$[/tex] represents the flat fee for delivery.
Therefore,
- The function that describes the revenue of the tile factory in terms of tiles sold is:
[tex]\[ y = 0.25x + 500 \][/tex]
- The flat fee for delivery is:
[tex]\[ \$500 \][/tex]
[tex]\[ y - 3000 = 0.25(x - 10000) \][/tex]
1. Simplify the given equation to get the revenue function:
Begin by distributing the [tex]$0.25$[/tex] on the right-hand side:
[tex]\[ y - 3000 = 0.25x - 2500 \][/tex]
Next, isolate [tex]$y$[/tex] by adding [tex]$3000$[/tex] to both sides of the equation:
[tex]\[ y = 0.25x - 2500 + 3000 \][/tex]
Simplify the right-hand side:
[tex]\[ y = 0.25x + 500 \][/tex]
Thus, the revenue function in terms of the number of tiles sold ([tex]$x$[/tex]) is:
[tex]\[ y = 0.25x + 500 \][/tex]
2. Identify the flat fee for delivery:
The flat fee for delivery is the constant term in the revenue function (the term that does not depend on [tex]$x$[/tex]). In the revenue function [tex]$y = 0.25x + 500$[/tex], the term [tex]$500$[/tex] represents the flat fee for delivery.
Therefore,
- The function that describes the revenue of the tile factory in terms of tiles sold is:
[tex]\[ y = 0.25x + 500 \][/tex]
- The flat fee for delivery is:
[tex]\[ \$500 \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.