At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To factorize the expression [tex]\((a-b)^3+(b-c)^3+(c-a)^3\)[/tex], let's follow a detailed, step-by-step approach:
1. Understanding the Expression:
We are given the expression [tex]\((a-b)^3 + (b-c)^3 + (c-a)^3\)[/tex] and asked to factorize it.
2. Sum of Cubes Identity:
There's an identity in algebra known as the sum of cubes identity:
[tex]\[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) \][/tex]
In this identity, if [tex]\(x + y + z = 0\)[/tex], then the expression simplifies to:
[tex]\[ x^3 + y^3 + z^3 = 3xyz \][/tex]
3. Assigning Values:
In our expression, let:
[tex]\[ x = (a - b), \quad y = (b - c), \quad z = (c - a) \][/tex]
4. Sum of x, y, and z:
Add the terms [tex]\(x, y, z\)[/tex] to check if their sum equals zero:
[tex]\[ (a - b) + (b - c) + (c - a) \][/tex]
This simplifies to:
[tex]\[ a - b + b - c + c - a = 0 \][/tex]
Since [tex]\(x + y + z = 0\)[/tex], we can use the simplification mentioned earlier.
5. Simplified Sum of Cubes:
According to the identity, when [tex]\(x + y + z = 0\)[/tex],
[tex]\[ x^3 + y^3 + z^3 = 3xyz \][/tex]
Thus, substituting back:
[tex]\[ (a - b)^3 + (b - c)^3 + (c - a)^3 = 3(a - b)(b - c)(c - a) \][/tex]
Therefore, the factorized form of the given expression is:
[tex]\[ 3(a-b)(b-c)(c-a) \][/tex]
This corresponds to:
(B) [tex]\(\boxed{3(a-b)(b-c)(c-a)}\)[/tex]
1. Understanding the Expression:
We are given the expression [tex]\((a-b)^3 + (b-c)^3 + (c-a)^3\)[/tex] and asked to factorize it.
2. Sum of Cubes Identity:
There's an identity in algebra known as the sum of cubes identity:
[tex]\[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) \][/tex]
In this identity, if [tex]\(x + y + z = 0\)[/tex], then the expression simplifies to:
[tex]\[ x^3 + y^3 + z^3 = 3xyz \][/tex]
3. Assigning Values:
In our expression, let:
[tex]\[ x = (a - b), \quad y = (b - c), \quad z = (c - a) \][/tex]
4. Sum of x, y, and z:
Add the terms [tex]\(x, y, z\)[/tex] to check if their sum equals zero:
[tex]\[ (a - b) + (b - c) + (c - a) \][/tex]
This simplifies to:
[tex]\[ a - b + b - c + c - a = 0 \][/tex]
Since [tex]\(x + y + z = 0\)[/tex], we can use the simplification mentioned earlier.
5. Simplified Sum of Cubes:
According to the identity, when [tex]\(x + y + z = 0\)[/tex],
[tex]\[ x^3 + y^3 + z^3 = 3xyz \][/tex]
Thus, substituting back:
[tex]\[ (a - b)^3 + (b - c)^3 + (c - a)^3 = 3(a - b)(b - c)(c - a) \][/tex]
Therefore, the factorized form of the given expression is:
[tex]\[ 3(a-b)(b-c)(c-a) \][/tex]
This corresponds to:
(B) [tex]\(\boxed{3(a-b)(b-c)(c-a)}\)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.