Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To simplify the given expression [tex]\(\frac{9+\frac{1}{x}}{8-\frac{1}{x}}\)[/tex], follow these steps:
1. Combine the terms to have a single fraction:
The given expression is [tex]\(\frac{9 + \frac{1}{x}}{8 - \frac{1}{x}}\)[/tex].
2. Rewrite each term with a common denominator:
To combine the terms inside the fractions on the numerator and the denominator, we'll express everything with the common denominator [tex]\(x\)[/tex]:
[tex]\[ 9 + \frac{1}{x} = \frac{9x}{x} + \frac{1}{x} = \frac{9x + 1}{x} \][/tex]
[tex]\[ 8 - \frac{1}{x} = \frac{8x}{x} - \frac{1}{x} = \frac{8x - 1}{x} \][/tex]
3. Rewrite the entire expression:
Substituting these into the original fraction, we get:
[tex]\[ \frac{\frac{9x + 1}{x}}{\frac{8x - 1}{x}} \][/tex]
4. Simplify the compound fraction:
Because both the numerator and the denominator have the same denominator [tex]\(x\)[/tex], they can be simplified:
[tex]\[ \frac{\frac{9x + 1}{x}}{\frac{8x - 1}{x}} = \frac{9x + 1}{8x - 1} \][/tex]
Thus, the simplified form of the fraction is:
[tex]\[ \frac{9x + 1}{8x - 1} \][/tex]
This is the simplified and factored form of the original expression.
1. Combine the terms to have a single fraction:
The given expression is [tex]\(\frac{9 + \frac{1}{x}}{8 - \frac{1}{x}}\)[/tex].
2. Rewrite each term with a common denominator:
To combine the terms inside the fractions on the numerator and the denominator, we'll express everything with the common denominator [tex]\(x\)[/tex]:
[tex]\[ 9 + \frac{1}{x} = \frac{9x}{x} + \frac{1}{x} = \frac{9x + 1}{x} \][/tex]
[tex]\[ 8 - \frac{1}{x} = \frac{8x}{x} - \frac{1}{x} = \frac{8x - 1}{x} \][/tex]
3. Rewrite the entire expression:
Substituting these into the original fraction, we get:
[tex]\[ \frac{\frac{9x + 1}{x}}{\frac{8x - 1}{x}} \][/tex]
4. Simplify the compound fraction:
Because both the numerator and the denominator have the same denominator [tex]\(x\)[/tex], they can be simplified:
[tex]\[ \frac{\frac{9x + 1}{x}}{\frac{8x - 1}{x}} = \frac{9x + 1}{8x - 1} \][/tex]
Thus, the simplified form of the fraction is:
[tex]\[ \frac{9x + 1}{8x - 1} \][/tex]
This is the simplified and factored form of the original expression.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.