At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which ordered pair is a solution to the equation:
[tex]\[ -4x + 7 = 2y - 3, \][/tex]
we will substitute the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] from each ordered pair into the equation and check if the equality holds.
### Step 1: Test the pair [tex]\((2, 1)\)[/tex].
Substitute [tex]\(x = 2\)[/tex] and [tex]\(y = 1\)[/tex] into the equation:
[tex]\[ -4(2) + 7 = 2(1) - 3. \][/tex]
Now compute each side of the equation:
[tex]\[ -4 \cdot 2 + 7 = -8 + 7 = -1, \][/tex]
[tex]\[ 2 \cdot 1 - 3 = 2 - 3 = -1. \][/tex]
Since [tex]\(-1 = -1\)[/tex], the pair [tex]\((2, 1)\)[/tex] satisfies the equation.
### Step 2: Test the pair [tex]\((5, -5)\)[/tex].
Substitute [tex]\(x = 5\)[/tex] and [tex]\(y = -5\)[/tex] into the equation:
[tex]\[ -4(5) + 7 = 2(-5) - 3. \][/tex]
Now compute each side of the equation:
[tex]\[ -4 \cdot 5 + 7 = -20 + 7 = -13, \][/tex]
[tex]\[ 2 \cdot (-5) - 3 = -10 - 3 = -13. \][/tex]
Since [tex]\(-13 = -13\)[/tex], the pair [tex]\((5, -5)\)[/tex] also satisfies the equation.
### Conclusion:
Both ordered pairs, [tex]\((2, 1)\)[/tex] and [tex]\((5, -5)\)[/tex], are solutions of the equation. Therefore, the correct answer is:
[tex]\[ \boxed{\text{Both } (2,1) \text{ and } (5,-5)} \][/tex]
So, the answer is (C) Both [tex]\((2,1)\)[/tex] and [tex]\((5,-5)\)[/tex].
[tex]\[ -4x + 7 = 2y - 3, \][/tex]
we will substitute the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] from each ordered pair into the equation and check if the equality holds.
### Step 1: Test the pair [tex]\((2, 1)\)[/tex].
Substitute [tex]\(x = 2\)[/tex] and [tex]\(y = 1\)[/tex] into the equation:
[tex]\[ -4(2) + 7 = 2(1) - 3. \][/tex]
Now compute each side of the equation:
[tex]\[ -4 \cdot 2 + 7 = -8 + 7 = -1, \][/tex]
[tex]\[ 2 \cdot 1 - 3 = 2 - 3 = -1. \][/tex]
Since [tex]\(-1 = -1\)[/tex], the pair [tex]\((2, 1)\)[/tex] satisfies the equation.
### Step 2: Test the pair [tex]\((5, -5)\)[/tex].
Substitute [tex]\(x = 5\)[/tex] and [tex]\(y = -5\)[/tex] into the equation:
[tex]\[ -4(5) + 7 = 2(-5) - 3. \][/tex]
Now compute each side of the equation:
[tex]\[ -4 \cdot 5 + 7 = -20 + 7 = -13, \][/tex]
[tex]\[ 2 \cdot (-5) - 3 = -10 - 3 = -13. \][/tex]
Since [tex]\(-13 = -13\)[/tex], the pair [tex]\((5, -5)\)[/tex] also satisfies the equation.
### Conclusion:
Both ordered pairs, [tex]\((2, 1)\)[/tex] and [tex]\((5, -5)\)[/tex], are solutions of the equation. Therefore, the correct answer is:
[tex]\[ \boxed{\text{Both } (2,1) \text{ and } (5,-5)} \][/tex]
So, the answer is (C) Both [tex]\((2,1)\)[/tex] and [tex]\((5,-5)\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.