Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's graph the function [tex]\( f(x) = \sqrt{x - 4} - 3 \)[/tex].
### Step-by-Step Solution
1. Understand the Domain of the Function:
- The function involves a square root, and the expression under the square root, [tex]\( x - 4 \)[/tex], must be non-negative.
- Therefore, [tex]\( x - 4 \geq 0 \)[/tex].
- Solving this inequality, we obtain [tex]\( x \geq 4 \)[/tex].
- So, the domain of [tex]\( f(x) \)[/tex] is [tex]\( [4, \infty) \)[/tex].
2. Identify Key Points:
- Evaluate the function at a few key points within its domain:
- At [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = \sqrt{4 - 4} - 3 = 0 - 3 = -3 \][/tex]
- At [tex]\( x = 5 \)[/tex]:
[tex]\[ f(5) = \sqrt{5 - 4} - 3 = 1 - 3 = -2 \][/tex]
- At [tex]\( x = 8 \)[/tex]:
[tex]\[ f(8) = \sqrt{8 - 4} - 3 = 2 - 3 = -1 \][/tex]
- At [tex]\( x = 13 \)[/tex]:
[tex]\[ f(13) = \sqrt{13 - 4} - 3 = 3 - 3 = 0 \][/tex]
- At [tex]\( x = 20 \)[/tex]:
[tex]\[ f(20) = \sqrt{20 - 4} - 3 = 4 - 3 = 1 \][/tex]
3. Basic Shape and Behavior of the Function:
- As [tex]\( x \)[/tex] increases from 4, [tex]\( \sqrt{x-4} \)[/tex] increases, and hence [tex]\( f(x) \)[/tex] increases as well.
- [tex]\( f(x) \)[/tex] is a transformation of the basic square root function [tex]\( g(x) = \sqrt{x} \)[/tex], shifted right by 4 units and down by 3 units.
4. Plotting the Graph:
- Axes: Draw the x-axis and y-axis.
- Plot the Points: Plot the points [tex]\((4, -3)\)[/tex], [tex]\((5, -2)\)[/tex], [tex]\((8, -1)\)[/tex], [tex]\((13, 0)\)[/tex], and [tex]\((20, 1)\)[/tex].
- Draw the Curve: Since [tex]\( f(x) \)[/tex] is increasing and non-linear (specifically, it’s a square root function), the curve should be a smooth increasing curve starting from [tex]\((4, -3)\)[/tex] and continuing to rise as [tex]\( x \)[/tex] increases.
5. Add Labels and Details:
- Label the x-axis as [tex]\( x \)[/tex] and the y-axis as [tex]\( f(x) \)[/tex].
- Add a title to the graph, such as "Graph of [tex]\( f(x) = \sqrt{x - 4} - 3 \)[/tex]".
- Label the significant points on the graph for clarity.
- Optionally, add grid lines for better readability.
### Resulting Graph
By following these steps, you would obtain a graph that starts at the point [tex]\((4, -3)\)[/tex] and increases as [tex]\( x \)[/tex] increases beyond 4. The graph resembles the right half of a sideways parabola, gradually rising without bounds as [tex]\( x \)[/tex] moves towards infinity.
You can use graphing tools or manually draw the curve carefully on graph paper to achieve the final visual representation of the function [tex]\( f(x) = \sqrt{x - 4} - 3 \)[/tex].
### Step-by-Step Solution
1. Understand the Domain of the Function:
- The function involves a square root, and the expression under the square root, [tex]\( x - 4 \)[/tex], must be non-negative.
- Therefore, [tex]\( x - 4 \geq 0 \)[/tex].
- Solving this inequality, we obtain [tex]\( x \geq 4 \)[/tex].
- So, the domain of [tex]\( f(x) \)[/tex] is [tex]\( [4, \infty) \)[/tex].
2. Identify Key Points:
- Evaluate the function at a few key points within its domain:
- At [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = \sqrt{4 - 4} - 3 = 0 - 3 = -3 \][/tex]
- At [tex]\( x = 5 \)[/tex]:
[tex]\[ f(5) = \sqrt{5 - 4} - 3 = 1 - 3 = -2 \][/tex]
- At [tex]\( x = 8 \)[/tex]:
[tex]\[ f(8) = \sqrt{8 - 4} - 3 = 2 - 3 = -1 \][/tex]
- At [tex]\( x = 13 \)[/tex]:
[tex]\[ f(13) = \sqrt{13 - 4} - 3 = 3 - 3 = 0 \][/tex]
- At [tex]\( x = 20 \)[/tex]:
[tex]\[ f(20) = \sqrt{20 - 4} - 3 = 4 - 3 = 1 \][/tex]
3. Basic Shape and Behavior of the Function:
- As [tex]\( x \)[/tex] increases from 4, [tex]\( \sqrt{x-4} \)[/tex] increases, and hence [tex]\( f(x) \)[/tex] increases as well.
- [tex]\( f(x) \)[/tex] is a transformation of the basic square root function [tex]\( g(x) = \sqrt{x} \)[/tex], shifted right by 4 units and down by 3 units.
4. Plotting the Graph:
- Axes: Draw the x-axis and y-axis.
- Plot the Points: Plot the points [tex]\((4, -3)\)[/tex], [tex]\((5, -2)\)[/tex], [tex]\((8, -1)\)[/tex], [tex]\((13, 0)\)[/tex], and [tex]\((20, 1)\)[/tex].
- Draw the Curve: Since [tex]\( f(x) \)[/tex] is increasing and non-linear (specifically, it’s a square root function), the curve should be a smooth increasing curve starting from [tex]\((4, -3)\)[/tex] and continuing to rise as [tex]\( x \)[/tex] increases.
5. Add Labels and Details:
- Label the x-axis as [tex]\( x \)[/tex] and the y-axis as [tex]\( f(x) \)[/tex].
- Add a title to the graph, such as "Graph of [tex]\( f(x) = \sqrt{x - 4} - 3 \)[/tex]".
- Label the significant points on the graph for clarity.
- Optionally, add grid lines for better readability.
### Resulting Graph
By following these steps, you would obtain a graph that starts at the point [tex]\((4, -3)\)[/tex] and increases as [tex]\( x \)[/tex] increases beyond 4. The graph resembles the right half of a sideways parabola, gradually rising without bounds as [tex]\( x \)[/tex] moves towards infinity.
You can use graphing tools or manually draw the curve carefully on graph paper to achieve the final visual representation of the function [tex]\( f(x) = \sqrt{x - 4} - 3 \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.