Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the value of [tex]\( p \)[/tex] for the series
[tex]\[ \sum_{n=1}^{\infty} n^2\left(3^{-3 \ln(n)}\right), \][/tex]
we will simplify the term [tex]\( n^2 \left( 3^{-3 \ln(n)} \right) \)[/tex].
First, focus on the term [tex]\( 3^{-3 \ln(n)} \)[/tex].
Using the property of exponents and logarithms, [tex]\( a^{b \ln(c)} = c^{\ln(c) \cdot b} \)[/tex], where [tex]\(\Delta\)[/tex] is the base of the logarithms:
[tex]\[ 3^{-3 \ln(n)} \][/tex]
can be rewritten as:
[tex]\[ 3^{-3 \ln(n)} = (e^{\ln(3)})^{-3 \ln(n)}. \][/tex]
Using the property [tex]\( e^{\ln(a)} = a \)[/tex], this becomes:
[tex]\[ 3^{-3 \ln(n)} = e^{(\ln(3) \cdot -3 \ln(n))}. \][/tex]
Simplify it to:
[tex]\[ e^{-\ln(3) \cdot 3 \ln(n)} = e^{-\ln(3^3 \cdot \ln(n))} = e^{-\ln(27) \cdot \ln(n)}. \][/tex]
Since [tex]\( e^{\ln(a^b)} = a^{b} \)[/tex], this can be further rewritten as:
[tex]\[ e^{\ln(n^{-\ln(27)})} = n^{-\ln(27)}. \][/tex]
Recall that [tex]\(\ln(27) = \ln(3^3) = 3\ln(3)\)[/tex]. So we have:
[tex]\[ 3^{-3 \ln(n)} = n^{-3 \ln(3)}. \][/tex]
Hence the term [tex]\( n^2 \left( 3^{-3 \ln(n)} \right) \)[/tex] simplifies to:
[tex]\[ n^2 \cdot n^{-3 \ln(3)} = n^{2 - 3 \ln(3)}. \][/tex]
Therefore, the value of [tex]\( p \)[/tex] in the exponent of [tex]\( n \)[/tex] is:
[tex]\[ p = 2 - 3 \ln(3). \][/tex]
So, the value of [tex]\( p \)[/tex] is
[tex]\[ 2 - 3 \ln(3). \][/tex]
[tex]\[ \sum_{n=1}^{\infty} n^2\left(3^{-3 \ln(n)}\right), \][/tex]
we will simplify the term [tex]\( n^2 \left( 3^{-3 \ln(n)} \right) \)[/tex].
First, focus on the term [tex]\( 3^{-3 \ln(n)} \)[/tex].
Using the property of exponents and logarithms, [tex]\( a^{b \ln(c)} = c^{\ln(c) \cdot b} \)[/tex], where [tex]\(\Delta\)[/tex] is the base of the logarithms:
[tex]\[ 3^{-3 \ln(n)} \][/tex]
can be rewritten as:
[tex]\[ 3^{-3 \ln(n)} = (e^{\ln(3)})^{-3 \ln(n)}. \][/tex]
Using the property [tex]\( e^{\ln(a)} = a \)[/tex], this becomes:
[tex]\[ 3^{-3 \ln(n)} = e^{(\ln(3) \cdot -3 \ln(n))}. \][/tex]
Simplify it to:
[tex]\[ e^{-\ln(3) \cdot 3 \ln(n)} = e^{-\ln(3^3 \cdot \ln(n))} = e^{-\ln(27) \cdot \ln(n)}. \][/tex]
Since [tex]\( e^{\ln(a^b)} = a^{b} \)[/tex], this can be further rewritten as:
[tex]\[ e^{\ln(n^{-\ln(27)})} = n^{-\ln(27)}. \][/tex]
Recall that [tex]\(\ln(27) = \ln(3^3) = 3\ln(3)\)[/tex]. So we have:
[tex]\[ 3^{-3 \ln(n)} = n^{-3 \ln(3)}. \][/tex]
Hence the term [tex]\( n^2 \left( 3^{-3 \ln(n)} \right) \)[/tex] simplifies to:
[tex]\[ n^2 \cdot n^{-3 \ln(3)} = n^{2 - 3 \ln(3)}. \][/tex]
Therefore, the value of [tex]\( p \)[/tex] in the exponent of [tex]\( n \)[/tex] is:
[tex]\[ p = 2 - 3 \ln(3). \][/tex]
So, the value of [tex]\( p \)[/tex] is
[tex]\[ 2 - 3 \ln(3). \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.