Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the first derivative of [tex]\( z = \tan(\sin^7(t)) \)[/tex] with respect to [tex]\( t \)[/tex], we will apply the chain rule of differentiation. Here’s a step-by-step approach:
1. Identify the outer function and its argument:
The outer function is [tex]\(\tan(x)\)[/tex], and its argument is [tex]\(x = \sin^7(t)\)[/tex].
2. Differentiate the outer function:
The derivative of [tex]\( \tan(x) \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( \sec^2(x) \)[/tex]. Therefore,
[tex]\[ \frac{d}{dx} \tan(x) = \sec^2(x). \][/tex]
3. Apply the outer function's derivative to its argument:
So, we get:
[tex]\[ \frac{d}{dx} \tan(\sin^7(t)) = \sec^2(\sin^7(t)). \][/tex]
4. Identify the inner function:
The inner function is [tex]\( x = \sin^7(t) \)[/tex].
5. Differentiate the inner function:
The inner function [tex]\( \sin^7(t) \)[/tex] is a composite function itself, and can be written as:
[tex]\[ (\sin(t))^7. \][/tex]
Using the chain rule again on this inner function:
- First, we differentiate power of [tex]\( \sin(t) \)[/tex], which gives us:
[tex]\[ 7(\sin(t))^6. \][/tex]
- Then, we multiply by the derivative of [tex]\( \sin(t) \)[/tex] itself:
[tex]\[ \frac{d}{dt} \sin(t) = \cos(t). \][/tex]
6. Combine these derivatives:
By combining the results from steps 3 and 5, we get:
[tex]\[ \frac{d}{dt} \tan(\sin^7(t)) = \sec^2(\sin^7(t)) \cdot 7 (\sin(t))^6 \cdot \cos(t). \][/tex]
7. Simplify the expression using [tex]\( \sec(x) = 1 / \cos(x) \)[/tex]:
We know that [tex]\(\sec(x) = 1 / \cos(x)\)[/tex], so:
[tex]\[ \sec^2(x) = (1 / \cos(x))^2 = \tan^2(x) + 1. \][/tex]
Thus, the first derivative of [tex]\( z = \tan(\sin^7(t)) \)[/tex] with respect to [tex]\( t \)[/tex] is:
[tex]\[ \frac{dz}{dt} = 7 (\tan(\sin^7(t))^2 + 1) (\sin(t))^6 \cos(t). \][/tex]
So, the detailed solution opines that:
[tex]\[ \frac{dz}{dt} = 7 (\tan(\sin^7(t))^2 + 1) \sin^6(t) \cos(t). \][/tex]
1. Identify the outer function and its argument:
The outer function is [tex]\(\tan(x)\)[/tex], and its argument is [tex]\(x = \sin^7(t)\)[/tex].
2. Differentiate the outer function:
The derivative of [tex]\( \tan(x) \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( \sec^2(x) \)[/tex]. Therefore,
[tex]\[ \frac{d}{dx} \tan(x) = \sec^2(x). \][/tex]
3. Apply the outer function's derivative to its argument:
So, we get:
[tex]\[ \frac{d}{dx} \tan(\sin^7(t)) = \sec^2(\sin^7(t)). \][/tex]
4. Identify the inner function:
The inner function is [tex]\( x = \sin^7(t) \)[/tex].
5. Differentiate the inner function:
The inner function [tex]\( \sin^7(t) \)[/tex] is a composite function itself, and can be written as:
[tex]\[ (\sin(t))^7. \][/tex]
Using the chain rule again on this inner function:
- First, we differentiate power of [tex]\( \sin(t) \)[/tex], which gives us:
[tex]\[ 7(\sin(t))^6. \][/tex]
- Then, we multiply by the derivative of [tex]\( \sin(t) \)[/tex] itself:
[tex]\[ \frac{d}{dt} \sin(t) = \cos(t). \][/tex]
6. Combine these derivatives:
By combining the results from steps 3 and 5, we get:
[tex]\[ \frac{d}{dt} \tan(\sin^7(t)) = \sec^2(\sin^7(t)) \cdot 7 (\sin(t))^6 \cdot \cos(t). \][/tex]
7. Simplify the expression using [tex]\( \sec(x) = 1 / \cos(x) \)[/tex]:
We know that [tex]\(\sec(x) = 1 / \cos(x)\)[/tex], so:
[tex]\[ \sec^2(x) = (1 / \cos(x))^2 = \tan^2(x) + 1. \][/tex]
Thus, the first derivative of [tex]\( z = \tan(\sin^7(t)) \)[/tex] with respect to [tex]\( t \)[/tex] is:
[tex]\[ \frac{dz}{dt} = 7 (\tan(\sin^7(t))^2 + 1) (\sin(t))^6 \cos(t). \][/tex]
So, the detailed solution opines that:
[tex]\[ \frac{dz}{dt} = 7 (\tan(\sin^7(t))^2 + 1) \sin^6(t) \cos(t). \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.