At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's find the derivative [tex]\( f'(x) \)[/tex] and the value of the derivative at [tex]\( x = 3 \)[/tex] for the function [tex]\( f(x) = \frac{3x^2 \tan x}{\sec x} \)[/tex].
### Step-by-Step Solution
1. Simplify the Function [tex]\( f(x) \)[/tex]:
We start by simplifying the expression. Recall that [tex]\( \sec(x) = \frac{1}{\cos(x)} \)[/tex], hence:
[tex]\[ f(x) = \frac{3x^2 \tan x}{\sec x} = 3x^2 \tan(x) \cos(x) \][/tex]
Here, we used the identity [tex]\( \sec(x) = \frac{1}{\cos(x)} \)[/tex] to simplify [tex]\( \frac{\tan(x)}{\sec(x)} \)[/tex] to [tex]\( \tan(x) \cos(x) \)[/tex].
2. Rewrite [tex]\( f(x) \)[/tex] Using Trigonometric Identities:
Recall that [tex]\( \tan(x) = \frac{\sin(x)}{\cos(x)} \)[/tex]. Therefore,
[tex]\[ f(x) = 3x^2 \left( \frac{\sin(x)}{\cos(x)} \right) \cos(x) = 3x^2 \sin(x) \][/tex]
3. Differentiate [tex]\( f(x) \)[/tex] with Respect to [tex]\( x \)[/tex]:
To find [tex]\( f'(x) \)[/tex], we need to use the product rule. The product rule states that if [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex] are functions of [tex]\( x \)[/tex], then:
[tex]\[ \frac{d}{dx}[u(x)v(x)] = u'(x)v(x) + u(x)v'(x) \][/tex]
Let [tex]\( u(x) = 3x^2 \)[/tex] and [tex]\( v(x) = \sin(x) \)[/tex]. Then:
[tex]\[ u'(x) = \frac{d}{dx}(3x^2) = 6x \][/tex]
and
[tex]\[ v'(x) = \frac{d}{dx}(\sin(x)) = \cos(x) \][/tex]
Applying the product rule:
[tex]\[ f'(x) = 6x \sin(x) + 3x^2 \cos(x) \][/tex]
4. Substitute [tex]\( x = 3 \)[/tex] into [tex]\( f'(x) \)[/tex]:
To find [tex]\( f'(3) \)[/tex], substitute [tex]\( x = 3 \)[/tex] into the derivative:
[tex]\[ f'(3) = 6 \cdot 3 \cdot \sin(3) + 3 \cdot 3^2 \cdot \cos(3) \][/tex]
Simplify the expression:
[tex]\[ f'(3) = 18 \sin(3) + 27 \cos(3) \][/tex]
### Final Answers
[tex]\[ f'(x) = 6x \sin(x) + 3x^2 \cos(x) \][/tex]
[tex]\[ f'(3) = 18 \sin(3) + 27 \cos(3) \][/tex]
These are the first derivative of [tex]\( f(x) \)[/tex] and its value at [tex]\( x = 3 \)[/tex] respectively.
### Step-by-Step Solution
1. Simplify the Function [tex]\( f(x) \)[/tex]:
We start by simplifying the expression. Recall that [tex]\( \sec(x) = \frac{1}{\cos(x)} \)[/tex], hence:
[tex]\[ f(x) = \frac{3x^2 \tan x}{\sec x} = 3x^2 \tan(x) \cos(x) \][/tex]
Here, we used the identity [tex]\( \sec(x) = \frac{1}{\cos(x)} \)[/tex] to simplify [tex]\( \frac{\tan(x)}{\sec(x)} \)[/tex] to [tex]\( \tan(x) \cos(x) \)[/tex].
2. Rewrite [tex]\( f(x) \)[/tex] Using Trigonometric Identities:
Recall that [tex]\( \tan(x) = \frac{\sin(x)}{\cos(x)} \)[/tex]. Therefore,
[tex]\[ f(x) = 3x^2 \left( \frac{\sin(x)}{\cos(x)} \right) \cos(x) = 3x^2 \sin(x) \][/tex]
3. Differentiate [tex]\( f(x) \)[/tex] with Respect to [tex]\( x \)[/tex]:
To find [tex]\( f'(x) \)[/tex], we need to use the product rule. The product rule states that if [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex] are functions of [tex]\( x \)[/tex], then:
[tex]\[ \frac{d}{dx}[u(x)v(x)] = u'(x)v(x) + u(x)v'(x) \][/tex]
Let [tex]\( u(x) = 3x^2 \)[/tex] and [tex]\( v(x) = \sin(x) \)[/tex]. Then:
[tex]\[ u'(x) = \frac{d}{dx}(3x^2) = 6x \][/tex]
and
[tex]\[ v'(x) = \frac{d}{dx}(\sin(x)) = \cos(x) \][/tex]
Applying the product rule:
[tex]\[ f'(x) = 6x \sin(x) + 3x^2 \cos(x) \][/tex]
4. Substitute [tex]\( x = 3 \)[/tex] into [tex]\( f'(x) \)[/tex]:
To find [tex]\( f'(3) \)[/tex], substitute [tex]\( x = 3 \)[/tex] into the derivative:
[tex]\[ f'(3) = 6 \cdot 3 \cdot \sin(3) + 3 \cdot 3^2 \cdot \cos(3) \][/tex]
Simplify the expression:
[tex]\[ f'(3) = 18 \sin(3) + 27 \cos(3) \][/tex]
### Final Answers
[tex]\[ f'(x) = 6x \sin(x) + 3x^2 \cos(x) \][/tex]
[tex]\[ f'(3) = 18 \sin(3) + 27 \cos(3) \][/tex]
These are the first derivative of [tex]\( f(x) \)[/tex] and its value at [tex]\( x = 3 \)[/tex] respectively.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.