Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the value of [tex]\( p \)[/tex] for the given series, we start with the series:
[tex]\[ \sum_{n=1}^{\infty} n^2 \left( 4^{-3 \ln(n)} \right) \][/tex]
We can use the exponentiation property [tex]\( a^{\log_b(x)} = x^{\log_b(a)} \)[/tex] to simplify the expression inside the sum.
First, let's deal with the term [tex]\( 4^{-3 \ln(n)} \)[/tex]. We can rewrite 4 as [tex]\( 2^2 \)[/tex], so we have:
[tex]\[ 4^{-3 \ln(n)} = (2^2)^{-3 \ln(n)} \][/tex]
This can be simplified further. Using the power rule for exponents:
[tex]\[ (2^2)^{-3 \ln(n)} = 2^{2 \cdot (-3 \ln(n))} = 2^{-6 \ln(n)} \][/tex]
Next, we take advantage of the property of exponents involving logarithms. Recall that [tex]\( 2^{-6 \ln(n)} = n^{\log_2(2^{-6})} \)[/tex]. Therefore:
[tex]\[ 2^{-6 \ln(n)} = n^{-6 \ln(2)} \][/tex]
Since [tex]\( \ln(2) \)[/tex] is a constant, this can be interpreted as:
[tex]\[ 2^{-6 \ln(n)} = n^{-6} \][/tex]
Hence, our original series now looks like:
[tex]\[ \sum_{n=1}^{\infty} n^2 \cdot n^{-6} \][/tex]
We can combine the exponents for [tex]\( n \)[/tex]:
[tex]\[ n^2 \cdot n^{-6} = n^{2 + (-6)} = n^{-4} \][/tex]
So our series is now:
[tex]\[ \sum_{n=1}^{\infty} n^{-4} \][/tex]
This matches the form of a [tex]\( p \)[/tex]-series [tex]\(\sum_{n=1}^{\infty} \frac{1}{n^p}\)[/tex], where [tex]\( p = 4 \)[/tex].
So, the value of [tex]\( p \)[/tex] is:
[tex]\[ p = 4 \][/tex]
[tex]\[ \sum_{n=1}^{\infty} n^2 \left( 4^{-3 \ln(n)} \right) \][/tex]
We can use the exponentiation property [tex]\( a^{\log_b(x)} = x^{\log_b(a)} \)[/tex] to simplify the expression inside the sum.
First, let's deal with the term [tex]\( 4^{-3 \ln(n)} \)[/tex]. We can rewrite 4 as [tex]\( 2^2 \)[/tex], so we have:
[tex]\[ 4^{-3 \ln(n)} = (2^2)^{-3 \ln(n)} \][/tex]
This can be simplified further. Using the power rule for exponents:
[tex]\[ (2^2)^{-3 \ln(n)} = 2^{2 \cdot (-3 \ln(n))} = 2^{-6 \ln(n)} \][/tex]
Next, we take advantage of the property of exponents involving logarithms. Recall that [tex]\( 2^{-6 \ln(n)} = n^{\log_2(2^{-6})} \)[/tex]. Therefore:
[tex]\[ 2^{-6 \ln(n)} = n^{-6 \ln(2)} \][/tex]
Since [tex]\( \ln(2) \)[/tex] is a constant, this can be interpreted as:
[tex]\[ 2^{-6 \ln(n)} = n^{-6} \][/tex]
Hence, our original series now looks like:
[tex]\[ \sum_{n=1}^{\infty} n^2 \cdot n^{-6} \][/tex]
We can combine the exponents for [tex]\( n \)[/tex]:
[tex]\[ n^2 \cdot n^{-6} = n^{2 + (-6)} = n^{-4} \][/tex]
So our series is now:
[tex]\[ \sum_{n=1}^{\infty} n^{-4} \][/tex]
This matches the form of a [tex]\( p \)[/tex]-series [tex]\(\sum_{n=1}^{\infty} \frac{1}{n^p}\)[/tex], where [tex]\( p = 4 \)[/tex].
So, the value of [tex]\( p \)[/tex] is:
[tex]\[ p = 4 \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.