Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
\hline
[tex]$f(x)$[/tex] & -54 & -20 & -4 & 0 & -2 & -4 & 0 & 16 & 50 \\
\hline
\end{tabular}

Which interval contains a local maximum for this function?
[tex]$\square$[/tex]

Which interval contains a local minimum for this function?
[tex]$\square$[/tex]


Sagot :

To determine the intervals that contain local maxima and minima based on the given [tex]\( x \)[/tex] and [tex]\( f(x) \)[/tex] values, we need to analyze the behavior of [tex]\( f(x) \)[/tex] at each point.

Given the table:

[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline x & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline f(x) & -54 & -20 & -4 & 0 & -2 & -4 & 0 & 16 & 50 \\ \hline \end{array} \][/tex]

We will look for the positions where [tex]\( f(x) \)[/tex] is greater than its neighbors (indicating a local maximum) or less than its neighbors (indicating a local minimum).

1. Local Maximum:
A local maximum occurs where the value of [tex]\( f(x) \)[/tex] at a point is greater than the values at neighboring points.

- At [tex]\( x = -3 \)[/tex], [tex]\( f(x) = -20 \)[/tex]:
- [tex]\( f(-4) = -54 \)[/tex] (left neighbor)
- [tex]\( f(-2) = -4 \)[/tex] (right neighbor)
- [tex]\( -20 \)[/tex] is not greater than both [tex]\(-54\)[/tex] and [tex]\(-4\)[/tex].

- At [tex]\( x = -2 \)[/tex], [tex]\( f(x) = -4 \)[/tex]:
- [tex]\( f(-3) = -20 \)[/tex] (left neighbor)
- [tex]\( f(-1) = 0 \)[/tex] (right neighbor)
- [tex]\( -4 \)[/tex] is not greater than both [tex]\(-20\)[/tex] and [tex]\(0\)[/tex].

- At [tex]\( x = -1 \)[/tex], [tex]\( f(x) = 0 \)[/tex]:
- [tex]\( f(-2) = -4 \)[/tex] (left neighbor)
- [tex]\( f(0) = -2 \)[/tex] (right neighbor)
- [tex]\( 0 \)[/tex] is greater than both [tex]\(-4\)[/tex] and [tex]\(-2\)[/tex], hence this is a local maximum.
- The interval around this maximum is [tex]\((-2, 0)\)[/tex].

- Checking other points, only [tex]\( x = -1 \)[/tex] satisfies the local maximum condition.

2. Local Minimum:
A local minimum occurs where the value of [tex]\( f(x) \)[/tex] at a point is less than the values at neighboring points.

- At [tex]\( x = -3 \)[/tex], [tex]\( f(x) = -20 \)[/tex]:
- [tex]\( f(-4) = -54 \)[/tex] (left neighbor)
- [tex]\( f(-2) = -4 \)[/tex] (right neighbor)
- [tex]\( -20 \)[/tex] is not less than both [tex]\(-54\)[/tex] and [tex]\(-4\)[/tex].

- At [tex]\( x = -2 \)[/tex], [tex]\( f(x) = -4 \)[/tex]:
- [tex]\( f(-3) = -20 \)[/tex] (left neighbor)
- [tex]\( f(-1) = 0 \)[/tex] (right neighbor)
- [tex]\( -4 \)[/tex] is not less than both [tex]\(-20\)[/tex] and [tex]\(0\)[/tex].

- At [tex]\( x = 0 \)[/tex], [tex]\( f(x) = -2 \)[/tex]:
- [tex]\( f(-1) = 0 \)[/tex] (left neighbor)
- [tex]\( f(1) = -4 \)[/tex] (right neighbor)
- [tex]\( -2 \)[/tex] is not less than both [tex]\(0\)[/tex] and [tex]\(-4\)[/tex].

- At [tex]\( x = 1 \)[/tex], [tex]\( f(x) = -4 \)[/tex]:
- [tex]\( f(0) = -2 \)[/tex] (left neighbor)
- [tex]\( f(2) = 0 \)[/tex] (right neighbor)
- [tex]\( -4 \)[/tex] is less than both [tex]\(-2\)[/tex] and [tex]\(0\)[/tex], hence this is a local minimum.
- The interval around this minimum is [tex]\((0, 2)\)[/tex].

3. Conclusion:

- Interval with local maximum: The interval [tex]\((-2, 0)\)[/tex] contains a local maximum.
- Interval with local minimum: The interval [tex]\((0, 2)\)[/tex] contains a local minimum.

These intervals indicate the ranges around the points where [tex]\( f(x) \)[/tex] attains local maxima and minima respectively.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.