At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's solve the problem step-by-step to find the equilibrium constant for the given chemical reaction.
Given the reaction:
[tex]\[ \text{PCl}_5(g) \longleftrightarrow \text{PCl}_3(g) + \text{Cl}_2(g) \][/tex]
The equilibrium concentrations at 500 K are:
[tex]\[ \left[ \text{PCl}_5 \right] = 0.0095 \, M \][/tex]
[tex]\[ \left[ \text{PCl}_3 \right] = 0.020 \, M \][/tex]
[tex]\[ \left[ \text{Cl}_2 \right] = 0.020 \, M \][/tex]
The equilibrium constant [tex]\( K_{eq} \)[/tex] is given by the expression:
[tex]\[ K_{eq} = \frac{\left[ \text{PCl}_3 \right] \left[ \text{Cl}_2 \right]}{\left[ \text{PCl}_5 \right]} \][/tex]
Now we substitute the values into this expression:
[tex]\[ K_{eq} = \frac{(0.020) \times (0.020)}{0.0095} \][/tex]
Simplifying the expression:
[tex]\[ K_{eq} = \frac{0.020 \times 0.020}{0.0095} \][/tex]
[tex]\[ K_{eq} = \frac{0.0004}{0.0095} \][/tex]
[tex]\[ K_{eq} \approx 0.042 \][/tex]
Therefore, the equilibrium constant [tex]\( K_{eq} \)[/tex] for the given reaction at 500 K is approximately [tex]\( 0.042 \)[/tex].
The correct answer is:
[tex]\[ 0.042 \][/tex]
Given the reaction:
[tex]\[ \text{PCl}_5(g) \longleftrightarrow \text{PCl}_3(g) + \text{Cl}_2(g) \][/tex]
The equilibrium concentrations at 500 K are:
[tex]\[ \left[ \text{PCl}_5 \right] = 0.0095 \, M \][/tex]
[tex]\[ \left[ \text{PCl}_3 \right] = 0.020 \, M \][/tex]
[tex]\[ \left[ \text{Cl}_2 \right] = 0.020 \, M \][/tex]
The equilibrium constant [tex]\( K_{eq} \)[/tex] is given by the expression:
[tex]\[ K_{eq} = \frac{\left[ \text{PCl}_3 \right] \left[ \text{Cl}_2 \right]}{\left[ \text{PCl}_5 \right]} \][/tex]
Now we substitute the values into this expression:
[tex]\[ K_{eq} = \frac{(0.020) \times (0.020)}{0.0095} \][/tex]
Simplifying the expression:
[tex]\[ K_{eq} = \frac{0.020 \times 0.020}{0.0095} \][/tex]
[tex]\[ K_{eq} = \frac{0.0004}{0.0095} \][/tex]
[tex]\[ K_{eq} \approx 0.042 \][/tex]
Therefore, the equilibrium constant [tex]\( K_{eq} \)[/tex] for the given reaction at 500 K is approximately [tex]\( 0.042 \)[/tex].
The correct answer is:
[tex]\[ 0.042 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.