Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the probability that a given light bulb lasts between 525 and 750 hours, given that the life of light bulbs follows a normal distribution with a mean ([tex]\(\mu\)[/tex]) of 750 hours and a standard deviation ([tex]\(\sigma\)[/tex]) of 75 hours, we can use the empirical rule, often known as the [tex]\(68 \%-95 \%-99.7 \%\)[/tex] rule.
### Step-by-Step Solution
1. Identify the given values:
- Mean ([tex]\(\mu\)[/tex]): 750 hours
- Standard deviation ([tex]\(\sigma\)[/tex]): 75 hours
- Lower bound: 525 hours
- Upper bound: 750 hours
2. Convert the given bounds to Z-scores:
The Z-score is calculated using the formula:
[tex]\[ Z = \frac{(X - \mu)}{\sigma} \][/tex]
where [tex]\(X\)[/tex] is the value of interest.
- For the lower bound (525 hours):
[tex]\[ Z_{\text{lower}} = \frac{(525 - 750)}{75} = \frac{-225}{75} = -3.0 \][/tex]
- For the upper bound (750 hours):
[tex]\[ Z_{\text{upper}} = \frac{(750 - 750)}{75} = \frac{0}{75} = 0.0 \][/tex]
3. Apply the [tex]\(68\%-95\%-99.7\%\)[/tex] rule:
The [tex]\(68\%-95\%-99.7\%\)[/tex] rule states that for a normal distribution:
- Approximately [tex]\(68\%\)[/tex] of the data lies within one standard deviation ([tex]\(\mu \pm \sigma\)[/tex]) from the mean.
- Approximately [tex]\(95\%\)[/tex] of the data lies within two standard deviations ([tex]\(\mu \pm 2\sigma\)[/tex]) from the mean.
- Approximately [tex]\(99.7\%\)[/tex] of the data lies within three standard deviations ([tex]\(\mu \pm 3\sigma\)[/tex]) from the mean.
In this case:
- The interval [tex]\(525 \leq b \leq 750\)[/tex] corresponds to Z-scores of [tex]\(-3\)[/tex] to [tex]\(0\)[/tex], which spans from the mean (750) to [tex]\(3\sigma\)[/tex] below the mean (525).
4. Determine the probability:
Given that [tex]\(68\%\)[/tex] of the data lies within one standard deviation ([tex]\(\mu \pm \sigma\)[/tex]), we can deduce that half of this percentage (from the mean to [tex]\(\mu - \sigma\)[/tex]) is [tex]\(34\%\)[/tex]. Therefore, the probability that a light bulb lasts between 525 and 750 hours is [tex]\(34\%\)[/tex] or [tex]\(0.34\)[/tex].
### Summary
Thus, the probability that a given light bulb lasts between 525 and 750 hours is approximately [tex]\(0.34\)[/tex] or [tex]\(34\%\)[/tex]. This conclusion follows from the empirical [tex]\(68\%-95\%-99.7\%\)[/tex] when the provided Z-scores were calculated and evaluated.
### Step-by-Step Solution
1. Identify the given values:
- Mean ([tex]\(\mu\)[/tex]): 750 hours
- Standard deviation ([tex]\(\sigma\)[/tex]): 75 hours
- Lower bound: 525 hours
- Upper bound: 750 hours
2. Convert the given bounds to Z-scores:
The Z-score is calculated using the formula:
[tex]\[ Z = \frac{(X - \mu)}{\sigma} \][/tex]
where [tex]\(X\)[/tex] is the value of interest.
- For the lower bound (525 hours):
[tex]\[ Z_{\text{lower}} = \frac{(525 - 750)}{75} = \frac{-225}{75} = -3.0 \][/tex]
- For the upper bound (750 hours):
[tex]\[ Z_{\text{upper}} = \frac{(750 - 750)}{75} = \frac{0}{75} = 0.0 \][/tex]
3. Apply the [tex]\(68\%-95\%-99.7\%\)[/tex] rule:
The [tex]\(68\%-95\%-99.7\%\)[/tex] rule states that for a normal distribution:
- Approximately [tex]\(68\%\)[/tex] of the data lies within one standard deviation ([tex]\(\mu \pm \sigma\)[/tex]) from the mean.
- Approximately [tex]\(95\%\)[/tex] of the data lies within two standard deviations ([tex]\(\mu \pm 2\sigma\)[/tex]) from the mean.
- Approximately [tex]\(99.7\%\)[/tex] of the data lies within three standard deviations ([tex]\(\mu \pm 3\sigma\)[/tex]) from the mean.
In this case:
- The interval [tex]\(525 \leq b \leq 750\)[/tex] corresponds to Z-scores of [tex]\(-3\)[/tex] to [tex]\(0\)[/tex], which spans from the mean (750) to [tex]\(3\sigma\)[/tex] below the mean (525).
4. Determine the probability:
Given that [tex]\(68\%\)[/tex] of the data lies within one standard deviation ([tex]\(\mu \pm \sigma\)[/tex]), we can deduce that half of this percentage (from the mean to [tex]\(\mu - \sigma\)[/tex]) is [tex]\(34\%\)[/tex]. Therefore, the probability that a light bulb lasts between 525 and 750 hours is [tex]\(34\%\)[/tex] or [tex]\(0.34\)[/tex].
### Summary
Thus, the probability that a given light bulb lasts between 525 and 750 hours is approximately [tex]\(0.34\)[/tex] or [tex]\(34\%\)[/tex]. This conclusion follows from the empirical [tex]\(68\%-95\%-99.7\%\)[/tex] when the provided Z-scores were calculated and evaluated.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.