At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the inequality [tex]\(6h - 5(h - 1) \leq 7h - 11\)[/tex], we will follow several algebraic steps. Here is the detailed, step-by-step solution:
1. Distribute the [tex]\(-5\)[/tex] within the parentheses on the left-hand side:
[tex]\[ 6h - 5(h - 1) \leq 7h - 11 \][/tex]
[tex]\[ 6h - 5h + 5 \leq 7h - 11 \][/tex]
2. Combine like terms on the left-hand side:
[tex]\[ (6h - 5h) + 5 \leq 7h - 11 \][/tex]
[tex]\[ h + 5 \leq 7h - 11 \][/tex]
3. Move the variable terms involving [tex]\(h\)[/tex] to one side and constants to the other side by subtracting [tex]\(7h\)[/tex] from both sides:
[tex]\[ h + 5 - 7h \leq -11 \][/tex]
[tex]\[ -6h + 5 \leq -11 \][/tex]
4. Isolate the variable term by subtracting [tex]\(5\)[/tex] from both sides:
[tex]\[ -6h + 5 - 5 \leq -11 - 5 \][/tex]
[tex]\[ -6h \leq -16 \][/tex]
5. Divide both sides of the inequality by [tex]\(-6\)[/tex] and remember to reverse the inequality sign (since dividing by a negative number reverses the inequality sign):
[tex]\[ h \geq \frac{-16}{-6} \][/tex]
[tex]\[ h \geq \frac{16}{6} \][/tex]
6. Simplify the fraction:
[tex]\[ h \geq \frac{16}{6} = \frac{8}{3} \][/tex]
The solution to the inequality [tex]\(6h - 5(h - 1) \leq 7h - 11\)[/tex] is [tex]\(h \geq \frac{8}{3}\)[/tex].
In interval notation, this solution is written as:
[tex]\[ \left[\frac{8}{3}, \infty\right) \][/tex]
Thus, the answer:
- The solution in terms of [tex]\(h\)[/tex]: [tex]\(h \geq \frac{8}{3}\)[/tex]
- The solution in interval notation: [tex]\(\left[\frac{8}{3}, \infty\right)\)[/tex]
1. Distribute the [tex]\(-5\)[/tex] within the parentheses on the left-hand side:
[tex]\[ 6h - 5(h - 1) \leq 7h - 11 \][/tex]
[tex]\[ 6h - 5h + 5 \leq 7h - 11 \][/tex]
2. Combine like terms on the left-hand side:
[tex]\[ (6h - 5h) + 5 \leq 7h - 11 \][/tex]
[tex]\[ h + 5 \leq 7h - 11 \][/tex]
3. Move the variable terms involving [tex]\(h\)[/tex] to one side and constants to the other side by subtracting [tex]\(7h\)[/tex] from both sides:
[tex]\[ h + 5 - 7h \leq -11 \][/tex]
[tex]\[ -6h + 5 \leq -11 \][/tex]
4. Isolate the variable term by subtracting [tex]\(5\)[/tex] from both sides:
[tex]\[ -6h + 5 - 5 \leq -11 - 5 \][/tex]
[tex]\[ -6h \leq -16 \][/tex]
5. Divide both sides of the inequality by [tex]\(-6\)[/tex] and remember to reverse the inequality sign (since dividing by a negative number reverses the inequality sign):
[tex]\[ h \geq \frac{-16}{-6} \][/tex]
[tex]\[ h \geq \frac{16}{6} \][/tex]
6. Simplify the fraction:
[tex]\[ h \geq \frac{16}{6} = \frac{8}{3} \][/tex]
The solution to the inequality [tex]\(6h - 5(h - 1) \leq 7h - 11\)[/tex] is [tex]\(h \geq \frac{8}{3}\)[/tex].
In interval notation, this solution is written as:
[tex]\[ \left[\frac{8}{3}, \infty\right) \][/tex]
Thus, the answer:
- The solution in terms of [tex]\(h\)[/tex]: [tex]\(h \geq \frac{8}{3}\)[/tex]
- The solution in interval notation: [tex]\(\left[\frac{8}{3}, \infty\right)\)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.