Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve for the limits of the function as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] and [tex]\( -\infty \)[/tex], we need to examine the behavior of the function [tex]\( f(x) = \frac{-2x^5 + 4x^3 + 2x}{-x^2 - 1} \)[/tex].
1. Limit as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex]:
[tex]\[ \lim_{x \to \infty} \frac{-2x^5 + 4x^3 + 2x}{-x^2 - 1} \][/tex]
When [tex]\( x \)[/tex] is very large (approaches infinity), the highest power of [tex]\( x \)[/tex] in the numerator ([tex]\( -2x^5 \)[/tex]) dominates, and similarly, the highest power in the denominator ([tex]\( -x^2 \)[/tex]) dominates. Therefore, the leading term in the numerator and the leading term in the denominator will primarily dictate the behavior of the fraction as [tex]\( x \)[/tex] becomes very large.
[tex]\[ \frac{-2x^5 + 4x^3 + 2x}{-x^2 - 1} \approx \frac{-2x^5}{-x^2} = 2x^3 \][/tex]
As [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex],
[tex]\[ 2x^3 \to \infty \][/tex]
Hence,
[tex]\[ \lim_{x \to \infty} \frac{-2x^5 + 4x^3 + 2x}{-x^2 - 1} = \infty \][/tex]
2. Limit as [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex]:
[tex]\[ \lim_{x \to -\infty} \frac{-2x^5 + 4x^3 + 2x}{-x^2 - 1} \][/tex]
Similarly, when [tex]\( x \)[/tex] is very large in magnitude but negative (approaches negative infinity), the highest power terms will still dominate:
[tex]\[ \frac{-2x^5 + 4x^3 + 2x}{-x^2 - 1} \approx \frac{-2x^5}{-x^2} = 2x^3 \][/tex]
As [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex],
[tex]\[ 2x^3 \to -\infty \][/tex]
Hence,
[tex]\[ \lim_{x \to -\infty} \frac{-2x^5 + 4x^3 + 2x}{-x^2 - 1} = -\infty \][/tex]
So, the evaluated limits are:
[tex]\[ \lim_{x \to \infty} f(x) = \infty \][/tex]
[tex]\[ \lim_{x \to -\infty} f(x) = -\infty \][/tex]
Therefore, the limits are [tex]\( \infty \)[/tex] as [tex]\( x \to \infty \)[/tex] and [tex]\( -\infty \)[/tex] as [tex]\( x \to -\infty \)[/tex].
1. Limit as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex]:
[tex]\[ \lim_{x \to \infty} \frac{-2x^5 + 4x^3 + 2x}{-x^2 - 1} \][/tex]
When [tex]\( x \)[/tex] is very large (approaches infinity), the highest power of [tex]\( x \)[/tex] in the numerator ([tex]\( -2x^5 \)[/tex]) dominates, and similarly, the highest power in the denominator ([tex]\( -x^2 \)[/tex]) dominates. Therefore, the leading term in the numerator and the leading term in the denominator will primarily dictate the behavior of the fraction as [tex]\( x \)[/tex] becomes very large.
[tex]\[ \frac{-2x^5 + 4x^3 + 2x}{-x^2 - 1} \approx \frac{-2x^5}{-x^2} = 2x^3 \][/tex]
As [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex],
[tex]\[ 2x^3 \to \infty \][/tex]
Hence,
[tex]\[ \lim_{x \to \infty} \frac{-2x^5 + 4x^3 + 2x}{-x^2 - 1} = \infty \][/tex]
2. Limit as [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex]:
[tex]\[ \lim_{x \to -\infty} \frac{-2x^5 + 4x^3 + 2x}{-x^2 - 1} \][/tex]
Similarly, when [tex]\( x \)[/tex] is very large in magnitude but negative (approaches negative infinity), the highest power terms will still dominate:
[tex]\[ \frac{-2x^5 + 4x^3 + 2x}{-x^2 - 1} \approx \frac{-2x^5}{-x^2} = 2x^3 \][/tex]
As [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex],
[tex]\[ 2x^3 \to -\infty \][/tex]
Hence,
[tex]\[ \lim_{x \to -\infty} \frac{-2x^5 + 4x^3 + 2x}{-x^2 - 1} = -\infty \][/tex]
So, the evaluated limits are:
[tex]\[ \lim_{x \to \infty} f(x) = \infty \][/tex]
[tex]\[ \lim_{x \to -\infty} f(x) = -\infty \][/tex]
Therefore, the limits are [tex]\( \infty \)[/tex] as [tex]\( x \to \infty \)[/tex] and [tex]\( -\infty \)[/tex] as [tex]\( x \to -\infty \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.