Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! To estimate [tex]\( y(1) \)[/tex] using Euler's method for the initial value problem [tex]\( y' = -5x + y^2 \)[/tex] with [tex]\( y(0) = 1 \)[/tex] and a step size [tex]\( h = 0.2 \)[/tex], follow these steps:
### Step-by-Step Solution
1. Initialize the variables:
- Start with [tex]\( x_0 = 0 \)[/tex]
- [tex]\( y_0 = 1 \)[/tex]
- Step size [tex]\( h = 0.2 \)[/tex]
2. Euler's method formula:
- The general formula for the next value in Euler’s method is:
[tex]\[ y_{n+1} = y_n + h \cdot f(x_n, y_n) \][/tex]
where [tex]\( f(x, y) = -5x + y^2 \)[/tex]
3. Perform iterations until [tex]\( x \)[/tex] reaches 1:
- First step (from [tex]\( x_0 = 0 \)[/tex] to [tex]\( x_1 = 0.2 \)[/tex]):
[tex]\[ f(x_0, y_0) = f(0, 1) = -5(0) + 1^2 = 1 \][/tex]
[tex]\[ y_1 = y_0 + h \cdot f(x_0, y_0) = 1 + 0.2 \cdot 1 = 1.2 \][/tex]
- Second step (from [tex]\( x_1 = 0.2 \)[/tex] to [tex]\( x_2 = 0.4 \)[/tex]):
[tex]\[ f(x_1, y_1) = f(0.2, 1.2) = -5(0.2) + 1.2^2 = -1 + 1.44 = 0.44 \][/tex]
[tex]\[ y_2 = y_1 + h \cdot f(x_1, y_1) = 1.2 + 0.2 \cdot 0.44 = 1.2 + 0.088 = 1.288 \][/tex]
- Third step (from [tex]\( x_2 = 0.4 \)[/tex] to [tex]\( x_3 = 0.6 \)[/tex]):
[tex]\[ f(x_2, y_2) = f(0.4, 1.288) = -5(0.4) + 1.288^2 = -2 + 1.658944 = -0.341056 \][/tex]
[tex]\[ y_3 = y_2 + h \cdot f(x_2, y_2) = 1.288 + 0.2 \cdot -0.341056 = 1.288 - 0.0682112 = 1.2197888 \][/tex]
- Fourth step (from [tex]\( x_3 = 0.6 \)[/tex] to [tex]\( x_4 = 0.8 \)[/tex]):
[tex]\[ f(x_3, y_3) = f(0.6, 1.2197888) = -5(0.6) + 1.2197888^2 = -3 + 1.4878534994 = -1.5121465006 \][/tex]
[tex]\[ y_4 = y_3 + h \cdot f(x_3, y_3) = 1.2197888 + 0.2 \cdot -1.5121465006 = 1.2197888 - 0.3024293 = 0.9173592 \][/tex]
- Fifth step (from [tex]\( x_4 = 0.8 \)[/tex] to [tex]\( x_5 = 1.0 \)[/tex]):
[tex]\[ f(x_4, y_4) = f(0.8, 0.9173592) = -5(0.8) + 0.9173592^2 = -4 + 0.8415456482 = -3.1584543518 \][/tex]
[tex]\[ y_5 = y_4 + h \cdot f(x_4, y_4) = 0.9173592 + 0.2 \cdot -3.1584543518 = 0.9173592 - 0.6316908704 = 0.2856777248 \][/tex]
Thus, after applying Euler’s method with a step size of 0.2, the approximate value of [tex]\( y(1) \)[/tex] is:
[tex]\[ y(1) \approx 0.2856777247248985 \][/tex]
This concludes the estimation of [tex]\( y(1) \)[/tex] using Euler's method for the given initial value problem.
### Step-by-Step Solution
1. Initialize the variables:
- Start with [tex]\( x_0 = 0 \)[/tex]
- [tex]\( y_0 = 1 \)[/tex]
- Step size [tex]\( h = 0.2 \)[/tex]
2. Euler's method formula:
- The general formula for the next value in Euler’s method is:
[tex]\[ y_{n+1} = y_n + h \cdot f(x_n, y_n) \][/tex]
where [tex]\( f(x, y) = -5x + y^2 \)[/tex]
3. Perform iterations until [tex]\( x \)[/tex] reaches 1:
- First step (from [tex]\( x_0 = 0 \)[/tex] to [tex]\( x_1 = 0.2 \)[/tex]):
[tex]\[ f(x_0, y_0) = f(0, 1) = -5(0) + 1^2 = 1 \][/tex]
[tex]\[ y_1 = y_0 + h \cdot f(x_0, y_0) = 1 + 0.2 \cdot 1 = 1.2 \][/tex]
- Second step (from [tex]\( x_1 = 0.2 \)[/tex] to [tex]\( x_2 = 0.4 \)[/tex]):
[tex]\[ f(x_1, y_1) = f(0.2, 1.2) = -5(0.2) + 1.2^2 = -1 + 1.44 = 0.44 \][/tex]
[tex]\[ y_2 = y_1 + h \cdot f(x_1, y_1) = 1.2 + 0.2 \cdot 0.44 = 1.2 + 0.088 = 1.288 \][/tex]
- Third step (from [tex]\( x_2 = 0.4 \)[/tex] to [tex]\( x_3 = 0.6 \)[/tex]):
[tex]\[ f(x_2, y_2) = f(0.4, 1.288) = -5(0.4) + 1.288^2 = -2 + 1.658944 = -0.341056 \][/tex]
[tex]\[ y_3 = y_2 + h \cdot f(x_2, y_2) = 1.288 + 0.2 \cdot -0.341056 = 1.288 - 0.0682112 = 1.2197888 \][/tex]
- Fourth step (from [tex]\( x_3 = 0.6 \)[/tex] to [tex]\( x_4 = 0.8 \)[/tex]):
[tex]\[ f(x_3, y_3) = f(0.6, 1.2197888) = -5(0.6) + 1.2197888^2 = -3 + 1.4878534994 = -1.5121465006 \][/tex]
[tex]\[ y_4 = y_3 + h \cdot f(x_3, y_3) = 1.2197888 + 0.2 \cdot -1.5121465006 = 1.2197888 - 0.3024293 = 0.9173592 \][/tex]
- Fifth step (from [tex]\( x_4 = 0.8 \)[/tex] to [tex]\( x_5 = 1.0 \)[/tex]):
[tex]\[ f(x_4, y_4) = f(0.8, 0.9173592) = -5(0.8) + 0.9173592^2 = -4 + 0.8415456482 = -3.1584543518 \][/tex]
[tex]\[ y_5 = y_4 + h \cdot f(x_4, y_4) = 0.9173592 + 0.2 \cdot -3.1584543518 = 0.9173592 - 0.6316908704 = 0.2856777248 \][/tex]
Thus, after applying Euler’s method with a step size of 0.2, the approximate value of [tex]\( y(1) \)[/tex] is:
[tex]\[ y(1) \approx 0.2856777247248985 \][/tex]
This concludes the estimation of [tex]\( y(1) \)[/tex] using Euler's method for the given initial value problem.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.