Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let’s factor the expression [tex]\( x^2 - 9 \)[/tex].
### Step-by-Step Solution
1. Identify the Form:
Notice that the expression [tex]\( x^2 - 9 \)[/tex] is a difference of squares. The difference of squares can be generally written as:
[tex]\[ a^2 - b^2 = (a + b)(a - b) \][/tex]
In this equation, [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are any two terms.
2. Recognize the Terms:
In the given expression [tex]\( x^2 - 9 \)[/tex]:
- [tex]\( a \)[/tex] is [tex]\( x \)[/tex] (since [tex]\( x^2 \)[/tex] is [tex]\( x \)[/tex] squared)
- [tex]\( b \)[/tex] is [tex]\( 3 \)[/tex] (since [tex]\( 9 \)[/tex] is [tex]\( 3 \)[/tex] squared)
3. Apply the Difference of Squares Formula:
Substitute [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the difference of squares formula:
[tex]\[ x^2 - 9 = (x + 3)(x - 3) \][/tex]
### Conclusion
After factoring, the expression [tex]\( x^2 - 9 \)[/tex] can be written as:
[tex]\[ (x + 3)(x - 3) \][/tex]
So, the factorized form of [tex]\( x^2 - 9 \)[/tex] is [tex]\((x + 3)(x - 3)\)[/tex].
### Step-by-Step Solution
1. Identify the Form:
Notice that the expression [tex]\( x^2 - 9 \)[/tex] is a difference of squares. The difference of squares can be generally written as:
[tex]\[ a^2 - b^2 = (a + b)(a - b) \][/tex]
In this equation, [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are any two terms.
2. Recognize the Terms:
In the given expression [tex]\( x^2 - 9 \)[/tex]:
- [tex]\( a \)[/tex] is [tex]\( x \)[/tex] (since [tex]\( x^2 \)[/tex] is [tex]\( x \)[/tex] squared)
- [tex]\( b \)[/tex] is [tex]\( 3 \)[/tex] (since [tex]\( 9 \)[/tex] is [tex]\( 3 \)[/tex] squared)
3. Apply the Difference of Squares Formula:
Substitute [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the difference of squares formula:
[tex]\[ x^2 - 9 = (x + 3)(x - 3) \][/tex]
### Conclusion
After factoring, the expression [tex]\( x^2 - 9 \)[/tex] can be written as:
[tex]\[ (x + 3)(x - 3) \][/tex]
So, the factorized form of [tex]\( x^2 - 9 \)[/tex] is [tex]\((x + 3)(x - 3)\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.