Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

The provided text appears to be incomplete or nonsensical. Based on the given information, it is difficult to determine the exact question or task. Here is a possible interpretation and correction:

Solve for [tex]\( x \)[/tex]:
[tex]\[ x^2 - 9 = 0 \][/tex]


Sagot :

Sure, let’s factor the expression [tex]\( x^2 - 9 \)[/tex].

### Step-by-Step Solution

1. Identify the Form:
Notice that the expression [tex]\( x^2 - 9 \)[/tex] is a difference of squares. The difference of squares can be generally written as:
[tex]\[ a^2 - b^2 = (a + b)(a - b) \][/tex]
In this equation, [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are any two terms.

2. Recognize the Terms:
In the given expression [tex]\( x^2 - 9 \)[/tex]:
- [tex]\( a \)[/tex] is [tex]\( x \)[/tex] (since [tex]\( x^2 \)[/tex] is [tex]\( x \)[/tex] squared)
- [tex]\( b \)[/tex] is [tex]\( 3 \)[/tex] (since [tex]\( 9 \)[/tex] is [tex]\( 3 \)[/tex] squared)

3. Apply the Difference of Squares Formula:
Substitute [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the difference of squares formula:
[tex]\[ x^2 - 9 = (x + 3)(x - 3) \][/tex]

### Conclusion
After factoring, the expression [tex]\( x^2 - 9 \)[/tex] can be written as:
[tex]\[ (x + 3)(x - 3) \][/tex]

So, the factorized form of [tex]\( x^2 - 9 \)[/tex] is [tex]\((x + 3)(x - 3)\)[/tex].