Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the value of [tex]\(\cos 45^{\circ}\)[/tex], we need to recall a basic fact from trigonometry:
1. The cosine of an angle in a right-angled triangle is defined as the ratio of the length of the adjacent side to the hypotenuse.
2. For a 45-degree angle in such a triangle, the two non-hypotenuse sides are equal because it is an isosceles right triangle (also known as a 45-45-90 triangle).
Given the properties of the 45-45-90 triangle:
- The lengths of the legs are equal.
- The length of the hypotenuse is [tex]\( \sqrt{2} \)[/tex] times the length of each leg.
To be more specific, if the legs are each of length [tex]\(1\)[/tex]:
- The hypotenuse [tex]\( h \)[/tex] will have a length of [tex]\( h = \sqrt{1^2 + 1^2} = \sqrt{2} \)[/tex].
Therefore, we find:
[tex]\[ \cos 45^{\circ} = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}}. \][/tex]
Note: The value [tex]\(\frac{1}{\sqrt{2}}\)[/tex] can also be written in its rationalized form, which would be:
[tex]\[ \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \][/tex]
However, looking at the answer choices provided:
- D. [tex]\( \frac{1}{\sqrt{2}} \)[/tex]
Thus, the value of [tex]\(\cos 45^{\circ}\)[/tex] is:
D. [tex]\(\frac{1}{\sqrt{2}}\)[/tex].
After verifying the provided answer, it matches our obtained value:
[tex]\[ \cos 45^{\circ} = 0.7071067811865476. \][/tex]
So, the correct choice from the options is indeed:
D. [tex]\(\frac{1}{\sqrt{2}}\)[/tex].
1. The cosine of an angle in a right-angled triangle is defined as the ratio of the length of the adjacent side to the hypotenuse.
2. For a 45-degree angle in such a triangle, the two non-hypotenuse sides are equal because it is an isosceles right triangle (also known as a 45-45-90 triangle).
Given the properties of the 45-45-90 triangle:
- The lengths of the legs are equal.
- The length of the hypotenuse is [tex]\( \sqrt{2} \)[/tex] times the length of each leg.
To be more specific, if the legs are each of length [tex]\(1\)[/tex]:
- The hypotenuse [tex]\( h \)[/tex] will have a length of [tex]\( h = \sqrt{1^2 + 1^2} = \sqrt{2} \)[/tex].
Therefore, we find:
[tex]\[ \cos 45^{\circ} = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}}. \][/tex]
Note: The value [tex]\(\frac{1}{\sqrt{2}}\)[/tex] can also be written in its rationalized form, which would be:
[tex]\[ \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \][/tex]
However, looking at the answer choices provided:
- D. [tex]\( \frac{1}{\sqrt{2}} \)[/tex]
Thus, the value of [tex]\(\cos 45^{\circ}\)[/tex] is:
D. [tex]\(\frac{1}{\sqrt{2}}\)[/tex].
After verifying the provided answer, it matches our obtained value:
[tex]\[ \cos 45^{\circ} = 0.7071067811865476. \][/tex]
So, the correct choice from the options is indeed:
D. [tex]\(\frac{1}{\sqrt{2}}\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.