Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this problem, we need to use the transformation rule involving reflection across the y-axis. The rule is given as:
[tex]\[ r_{y \text{-axis}}(x, y) \rightarrow (-x, y) \][/tex]
This transformation means that any point [tex]\((x, y)\)[/tex] will be reflected across the y-axis to become [tex]\((-x, y)\)[/tex]. Our goal is to find which of the given points is the pre-image of the vertex [tex]\( A' \)[/tex].
Given:
[tex]\[ A' = (4, 2) \][/tex]
We need to check each of the given points to see which one, when the transformation rule is applied, results in the coordinates [tex]\((4, 2)\)[/tex].
Let's examine each point one by one:
1. For [tex]\( A = (-4, 2) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(-4, 2) \rightarrow (-(-4), 2) = (4, 2) \][/tex]
This matches [tex]\( A' \)[/tex].
2. For [tex]\( A = (-2, -4) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(-2, -4) \rightarrow (-(-2), -4) = (2, -4) \][/tex]
This does not match [tex]\( A' \)[/tex].
3. For [tex]\( A = (2, 4) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(2, 4) \rightarrow (-(2), 4) = (-2, 4) \][/tex]
This does not match [tex]\( A' \)[/tex].
4. For [tex]\( A = (4, -2) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(4, -2) \rightarrow (-(4), -2) = (-4, -2) \][/tex]
This does not match [tex]\( A' \)[/tex].
Only the point [tex]\( (-4, 2) \)[/tex], when transformed, produces the vertex [tex]\( A' \)[/tex] with coordinates [tex]\( (4, 2) \)[/tex].
Therefore, the pre-image of vertex [tex]\( A' \)[/tex] is:
[tex]\[ A(-4, 2) \][/tex]
[tex]\[ r_{y \text{-axis}}(x, y) \rightarrow (-x, y) \][/tex]
This transformation means that any point [tex]\((x, y)\)[/tex] will be reflected across the y-axis to become [tex]\((-x, y)\)[/tex]. Our goal is to find which of the given points is the pre-image of the vertex [tex]\( A' \)[/tex].
Given:
[tex]\[ A' = (4, 2) \][/tex]
We need to check each of the given points to see which one, when the transformation rule is applied, results in the coordinates [tex]\((4, 2)\)[/tex].
Let's examine each point one by one:
1. For [tex]\( A = (-4, 2) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(-4, 2) \rightarrow (-(-4), 2) = (4, 2) \][/tex]
This matches [tex]\( A' \)[/tex].
2. For [tex]\( A = (-2, -4) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(-2, -4) \rightarrow (-(-2), -4) = (2, -4) \][/tex]
This does not match [tex]\( A' \)[/tex].
3. For [tex]\( A = (2, 4) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(2, 4) \rightarrow (-(2), 4) = (-2, 4) \][/tex]
This does not match [tex]\( A' \)[/tex].
4. For [tex]\( A = (4, -2) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(4, -2) \rightarrow (-(4), -2) = (-4, -2) \][/tex]
This does not match [tex]\( A' \)[/tex].
Only the point [tex]\( (-4, 2) \)[/tex], when transformed, produces the vertex [tex]\( A' \)[/tex] with coordinates [tex]\( (4, 2) \)[/tex].
Therefore, the pre-image of vertex [tex]\( A' \)[/tex] is:
[tex]\[ A(-4, 2) \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.