Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the inequality [tex]\( 5 \leq 2u - 1 < 17 \)[/tex], we need to break it into two parts and solve each part step-by-step.
### Step 1: Solve the left part of the inequality
We start with:
[tex]\[ 5 \leq 2u - 1 \][/tex]
1. Add 1 to both sides of the inequality:
[tex]\[ 5 + 1 \leq 2u - 1 + 1 \][/tex]
[tex]\[ 6 \leq 2u \][/tex]
2. Divide both sides by 2 to isolate [tex]\( u \)[/tex]:
[tex]\[ \frac{6}{2} \leq \frac{2u}{2} \][/tex]
[tex]\[ 3 \leq u \][/tex]
So the solution to the left part is:
[tex]\[ u \geq 3 \][/tex]
### Step 2: Solve the right part of the inequality
We next take:
[tex]\[ 2u - 1 < 17 \][/tex]
1. Add 1 to both sides of the inequality:
[tex]\[ 2u - 1 + 1 < 17 + 1 \][/tex]
[tex]\[ 2u < 18 \][/tex]
2. Divide both sides by 2 to isolate [tex]\( u \)[/tex]:
[tex]\[ \frac{2u}{2} < \frac{18}{2} \][/tex]
[tex]\[ u < 9 \][/tex]
So the solution to the right part is:
[tex]\[ u < 9 \][/tex]
### Step 3: Combine the results
We need [tex]\( u \)[/tex] to satisfy both parts of the inequality simultaneously. Thus, combining the results from the two steps, we have:
[tex]\[ 3 \leq u < 9 \][/tex]
### Conclusion
The solution to the inequality [tex]\( 5 \leq 2u - 1 < 17 \)[/tex] is:
[tex]\[ 3 \leq u < 9 \][/tex]
### Step 1: Solve the left part of the inequality
We start with:
[tex]\[ 5 \leq 2u - 1 \][/tex]
1. Add 1 to both sides of the inequality:
[tex]\[ 5 + 1 \leq 2u - 1 + 1 \][/tex]
[tex]\[ 6 \leq 2u \][/tex]
2. Divide both sides by 2 to isolate [tex]\( u \)[/tex]:
[tex]\[ \frac{6}{2} \leq \frac{2u}{2} \][/tex]
[tex]\[ 3 \leq u \][/tex]
So the solution to the left part is:
[tex]\[ u \geq 3 \][/tex]
### Step 2: Solve the right part of the inequality
We next take:
[tex]\[ 2u - 1 < 17 \][/tex]
1. Add 1 to both sides of the inequality:
[tex]\[ 2u - 1 + 1 < 17 + 1 \][/tex]
[tex]\[ 2u < 18 \][/tex]
2. Divide both sides by 2 to isolate [tex]\( u \)[/tex]:
[tex]\[ \frac{2u}{2} < \frac{18}{2} \][/tex]
[tex]\[ u < 9 \][/tex]
So the solution to the right part is:
[tex]\[ u < 9 \][/tex]
### Step 3: Combine the results
We need [tex]\( u \)[/tex] to satisfy both parts of the inequality simultaneously. Thus, combining the results from the two steps, we have:
[tex]\[ 3 \leq u < 9 \][/tex]
### Conclusion
The solution to the inequality [tex]\( 5 \leq 2u - 1 < 17 \)[/tex] is:
[tex]\[ 3 \leq u < 9 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.