Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Which of the following points are on the line given by the equation [tex]y=2x[/tex]?

Check all that apply.
A. [tex](3,6)[/tex]
B. [tex](5,10)[/tex]
C. [tex](1,3)[/tex]
D. [tex](4,6)[/tex]
E. [tex](16,8)[/tex]
F. [tex](4,2)[/tex]


Sagot :

To determine which of the given points lie on the line defined by the equation [tex]\( y = 2x \)[/tex], we need to check each point to see if it satisfies the equation. We will substitute the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] coordinates of each point into the equation and verify if both sides of the equation are equal.

The equation is [tex]\( y = 2x \)[/tex].

Let's check each point one by one.

Point A: [tex]\((3, 6)\)[/tex]
- Substitute [tex]\( x = 3 \)[/tex] into the equation: [tex]\( y = 2(3) \)[/tex]
- This gives [tex]\( y = 6 \)[/tex]
- The coordinates [tex]\((3, 6)\)[/tex] satisfy the equation, so this point is on the line.

Point B: [tex]\((5, 10)\)[/tex]
- Substitute [tex]\( x = 5 \)[/tex] into the equation: [tex]\( y = 2(5) \)[/tex]
- This gives [tex]\( y = 10 \)[/tex]
- The coordinates [tex]\((5, 10)\)[/tex] satisfy the equation, so this point is on the line.

Point C: [tex]\((1, 3)\)[/tex]
- Substitute [tex]\( x = 1 \)[/tex] into the equation: [tex]\( y = 2(1) \)[/tex]
- This gives [tex]\( y = 2 \)[/tex]
- The coordinates [tex]\((1, 3)\)[/tex] do not satisfy the equation, so this point is not on the line.

Point D: [tex]\((4, 6)\)[/tex]
- Substitute [tex]\( x = 4 \)[/tex] into the equation: [tex]\( y = 2(4) \)[/tex]
- This gives [tex]\( y = 8 \)[/tex]
- The coordinates [tex]\((4, 6)\)[/tex] do not satisfy the equation, so this point is not on the line.

Point E: [tex]\((16, 8)\)[/tex]
- Substitute [tex]\( x = 16 \)[/tex] into the equation: [tex]\( y = 2(16) \)[/tex]
- This gives [tex]\( y = 32 \)[/tex]
- The coordinates [tex]\((16, 8)\)[/tex] do not satisfy the equation, so this point is not on the line.

Point F: [tex]\((4, 2)\)[/tex]
- Substitute [tex]\( x = 4 \)[/tex] into the equation: [tex]\( y = 2(4) \)[/tex]
- This gives [tex]\( y = 8 \)[/tex]
- The coordinates [tex]\((4, 2)\)[/tex] do not satisfy the equation, so this point is not on the line.

After checking all the points, the ones that satisfy the equation [tex]\( y = 2x \)[/tex] and hence lie on the line are:
- [tex]\((3, 6)\)[/tex]
- [tex]\((5, 10)\)[/tex]

So, the points that are on the line [tex]\( y = 2x \)[/tex] are:
[tex]\[ \boxed{A. (3, 6) \text{ and } B. (5, 10)} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.