Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Find the equation, in standard form, of the line passing through the points [tex]\((3, -4)\)[/tex] and [tex]\((5, 1)\)[/tex].

A. [tex]\(5x - 2y = 23\)[/tex]

B. [tex]\(y = \frac{5}{2}x - \frac{23}{2}\)[/tex]

C. [tex]\(5x + 2y = 23\)[/tex]

D. [tex]\(2x - 3y = 9\)[/tex]


Sagot :

To find the equation of the line passing through the points [tex]\((3, -4)\)[/tex] and [tex]\((5, 1)\)[/tex], we need to determine the standard form of the line, which is [tex]\(Ax + By = C\)[/tex].

### Step 1: Calculate the slope of the line
The slope [tex]\(m\)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Plugging in the coordinates of the given points [tex]\((3, -4)\)[/tex] and [tex]\((5, 1)\)[/tex]:
[tex]\[ m = \frac{1 - (-4)}{5 - 3} = \frac{1 + 4}{5 - 3} = \frac{5}{2} \][/tex]

### Step 2: Use the point-slope form to find the equation
The point-slope form of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]

Using one of our points, [tex]\((3, -4)\)[/tex], and the slope [tex]\(m = \frac{5}{2}\)[/tex]:
[tex]\[ y + 4 = \frac{5}{2} (x - 3) \][/tex]

### Step 3: Simplify to slope-intercept form
Expanding and simplifying the equation:
[tex]\[ y + 4 = \frac{5}{2}x - \frac{15}{2} \][/tex]

Subtracting 4 on both sides:
[tex]\[ y = \frac{5}{2}x - \frac{15}{2} - 4 \][/tex]

Combining the constants on the right-hand side:
[tex]\[ y = \frac{5}{2}x - \frac{15}{2} - \frac{8}{2} \][/tex]
[tex]\[ y = \frac{5}{2}x - \frac{23}{2} \][/tex]

### Step 4: Convert to standard form [tex]\(Ax + By = C\)[/tex]
We need to rearrange [tex]\(y = \frac{5}{2}x - \frac{23}{2}\)[/tex] to the standard form [tex]\(Ax + By = C\)[/tex].

First, clear the fractions by multiplying through by 2:
[tex]\[ 2y = 5x - 23 \][/tex]

Rearranging to standard form [tex]\(Ax + By = C\)[/tex]:
[tex]\[ 5x - 2y = 23 \][/tex]

### Final Result
The equation of the line in standard form is [tex]\(5x - 2y = 23\)[/tex], which matches option A.

Therefore, the correct answer is:

A. [tex]\(5x - 2y = 23\)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.