Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the electric force acting between two charges, we use Coulomb's Law, which states that the electric force ([tex]\(F_e\)[/tex]) between two point charges is given by:
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
where:
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]).
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges.
- [tex]\( r \)[/tex] is the distance between the charges.
Given:
- [tex]\( q_1 = -0.0085 \, \text{C} \)[/tex]
- [tex]\( q_2 = -0.0025 \, \text{C} \)[/tex]
- [tex]\( r = 0.0020 \, \text{m} \)[/tex]
Let's plug these values into the formula:
[tex]\[ F_e = \frac{(9.00 \times 10^9) (-0.0085) (-0.0025)}{(0.0020)^2} \][/tex]
First, we calculate the numerator:
[tex]\[ 9.00 \times 10^9 \times -0.0085 \times -0.0025 \][/tex]
The product of the charges ([tex]\(-0.0085 \times -0.0025\)[/tex]) is:
[tex]\[ -0.0085 \times -0.0025 = 2.125 \times 10^{-5} \][/tex]
Therefore, the numerator becomes:
[tex]\[ 9.00 \times 10^9 \times 2.125 \times 10^{-5} = 191.25 \times 10^4 = 1.9125 \times 10^6 \][/tex]
Next, we calculate the denominator:
[tex]\[ (0.0020)^2 = 4.0 \times 10^{-6} \][/tex]
Now, we divide the numerator by the denominator:
[tex]\[ F_e = \frac{1.9125 \times 10^6}{4.0 \times 10^{-6}} \][/tex]
Dividing the values:
[tex]\[ F_e = 47812500000.0 \][/tex]
So, the electric force is:
[tex]\[ F_e = 4.78125 \times 10^{10} \, \text{N} \][/tex]
Since charges are negative, and we are looking for the magnitude of force:
[tex]\[ F_e = 4.8 \times 10^{10} \, \text{N} \][/tex]
Thus, the correct answer is:
B. [tex]\( 4.8 \times 10^{10} \, \text{N} \)[/tex]
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
where:
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]).
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges.
- [tex]\( r \)[/tex] is the distance between the charges.
Given:
- [tex]\( q_1 = -0.0085 \, \text{C} \)[/tex]
- [tex]\( q_2 = -0.0025 \, \text{C} \)[/tex]
- [tex]\( r = 0.0020 \, \text{m} \)[/tex]
Let's plug these values into the formula:
[tex]\[ F_e = \frac{(9.00 \times 10^9) (-0.0085) (-0.0025)}{(0.0020)^2} \][/tex]
First, we calculate the numerator:
[tex]\[ 9.00 \times 10^9 \times -0.0085 \times -0.0025 \][/tex]
The product of the charges ([tex]\(-0.0085 \times -0.0025\)[/tex]) is:
[tex]\[ -0.0085 \times -0.0025 = 2.125 \times 10^{-5} \][/tex]
Therefore, the numerator becomes:
[tex]\[ 9.00 \times 10^9 \times 2.125 \times 10^{-5} = 191.25 \times 10^4 = 1.9125 \times 10^6 \][/tex]
Next, we calculate the denominator:
[tex]\[ (0.0020)^2 = 4.0 \times 10^{-6} \][/tex]
Now, we divide the numerator by the denominator:
[tex]\[ F_e = \frac{1.9125 \times 10^6}{4.0 \times 10^{-6}} \][/tex]
Dividing the values:
[tex]\[ F_e = 47812500000.0 \][/tex]
So, the electric force is:
[tex]\[ F_e = 4.78125 \times 10^{10} \, \text{N} \][/tex]
Since charges are negative, and we are looking for the magnitude of force:
[tex]\[ F_e = 4.8 \times 10^{10} \, \text{N} \][/tex]
Thus, the correct answer is:
B. [tex]\( 4.8 \times 10^{10} \, \text{N} \)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.