Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Consider a segment with endpoints [tex]S(-7, -6)[/tex] and [tex]T(2, 4)[/tex].

What is the length of [tex]\overline{ST}[/tex]?

A. 19
B. 3
C. [tex]\sqrt{181}[/tex]
D. [tex]\sqrt{185}[/tex]


Sagot :

To find the length of the segment [tex]\(\overline{ST}\)[/tex] with endpoints [tex]\(S(-7, -6)\)[/tex] and [tex]\(T(2, 4)\)[/tex], we'll use the distance formula, which is given by:

[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Here, the coordinates of point [tex]\(S\)[/tex] are [tex]\((-7, -6)\)[/tex] and the coordinates of point [tex]\(T\)[/tex] are [tex]\((2, 4)\)[/tex].

First, we calculate the differences in the coordinates:

[tex]\[ x_2 - x_1 = 2 - (-7) = 2 + 7 = 9 \][/tex]

[tex]\[ y_2 - y_1 = 4 - (-6) = 4 + 6 = 10 \][/tex]

Next, we square these differences:

[tex]\[ (9)^2 = 81 \][/tex]

[tex]\[ (10)^2 = 100 \][/tex]

Now, we add these squares:

[tex]\[ 81 + 100 = 181 \][/tex]

Finally, we take the square root of this sum to get the distance:

[tex]\[ \sqrt{181} \approx 13.45362404707371 \][/tex]

So, the length of [tex]\(\overline{ST}\)[/tex] is:

[tex]\[ \sqrt{181} \][/tex]

Thus, the correct answer is [tex]\(\boxed{\sqrt{181}}\)[/tex].