Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's solve the equation step-by-step.
The given equation is:
[tex]\[ x^{\log_{10} \left( \frac{5x}{2} \right)} = 10^{\log_{10} x} \][/tex]
To solve this, we can use properties of logarithms and exponents.
1. Simplify the right-hand side:
Since [tex]\(10^{\log_{10} x} = x\)[/tex], we can rewrite the equation as:
[tex]\[ x^{\log_{10} \left( \frac{5x}{2} \right)} = x \][/tex]
2. Assuming [tex]\(x \neq 0\)[/tex], take the logarithm base 10 of both sides to simplify:
[tex]\[ \log_{10} \left( x^{\log_{10} \left( \frac{5x}{2} \right)} \right) = \log_{10} (x) \][/tex]
3. Apply the power rule of logarithms ([tex]\(\log_{10}(a^b) = b \log_{10}(a)\)[/tex]):
[tex]\[ \log_{10} \left( \frac{5x}{2} \right) \cdot \log_{10}(x) = \log_{10}(x) \][/tex]
4. Since [tex]\( \log_{10}(x) \)[/tex] is not zero (otherwise [tex]\(x\)[/tex] would be 1, which we will check later), we can cancel [tex]\( \log_{10}(x) \)[/tex] from both sides:
[tex]\[ \log_{10} \left( \frac{5x}{2} \right) = 1 \][/tex]
5. Solve for [tex]\(\frac{5x}{2}\)[/tex]:
Recall that if [tex]\(\log_{10}(a) = b\)[/tex], then [tex]\(a = 10^b\)[/tex]. So,
[tex]\[ \frac{5x}{2} = 10 \][/tex]
6. Solve for [tex]\(x\)[/tex]:
[tex]\[ 5x = 20 \][/tex]
[tex]\[ x = 4 \][/tex]
Now, let's verify if there are any other potential solutions or contradictions. Let's check if [tex]\(x = 1\)[/tex] could be a solution by plugging it back into the original equation:
For [tex]\(x = 1\)[/tex]:
[tex]\[ 1^{\log_{10} \left( \frac{5 \cdot 1}{2} \right)} \neq 10^{\log_{10} 1} \][/tex]
This does not hold since [tex]\(\log_{10}1 = 0\)[/tex] therefore [tex]\(10^0 = 1\)[/tex]. Also, the left side would be [tex]\(1^{\log_{10}\left(2.5\right)} \neq 1\)[/tex].
No other [tex]\(x\)[/tex] satisfies the equation other than [tex]\(x = 4\)[/tex]. As [tex]\(4\)[/tex] is the only root, its sum is simply [tex]\(4\)[/tex].
Thus, the sum of the real roots of the equation is:
[tex]\[ \boxed{0} \][/tex]
The given equation is:
[tex]\[ x^{\log_{10} \left( \frac{5x}{2} \right)} = 10^{\log_{10} x} \][/tex]
To solve this, we can use properties of logarithms and exponents.
1. Simplify the right-hand side:
Since [tex]\(10^{\log_{10} x} = x\)[/tex], we can rewrite the equation as:
[tex]\[ x^{\log_{10} \left( \frac{5x}{2} \right)} = x \][/tex]
2. Assuming [tex]\(x \neq 0\)[/tex], take the logarithm base 10 of both sides to simplify:
[tex]\[ \log_{10} \left( x^{\log_{10} \left( \frac{5x}{2} \right)} \right) = \log_{10} (x) \][/tex]
3. Apply the power rule of logarithms ([tex]\(\log_{10}(a^b) = b \log_{10}(a)\)[/tex]):
[tex]\[ \log_{10} \left( \frac{5x}{2} \right) \cdot \log_{10}(x) = \log_{10}(x) \][/tex]
4. Since [tex]\( \log_{10}(x) \)[/tex] is not zero (otherwise [tex]\(x\)[/tex] would be 1, which we will check later), we can cancel [tex]\( \log_{10}(x) \)[/tex] from both sides:
[tex]\[ \log_{10} \left( \frac{5x}{2} \right) = 1 \][/tex]
5. Solve for [tex]\(\frac{5x}{2}\)[/tex]:
Recall that if [tex]\(\log_{10}(a) = b\)[/tex], then [tex]\(a = 10^b\)[/tex]. So,
[tex]\[ \frac{5x}{2} = 10 \][/tex]
6. Solve for [tex]\(x\)[/tex]:
[tex]\[ 5x = 20 \][/tex]
[tex]\[ x = 4 \][/tex]
Now, let's verify if there are any other potential solutions or contradictions. Let's check if [tex]\(x = 1\)[/tex] could be a solution by plugging it back into the original equation:
For [tex]\(x = 1\)[/tex]:
[tex]\[ 1^{\log_{10} \left( \frac{5 \cdot 1}{2} \right)} \neq 10^{\log_{10} 1} \][/tex]
This does not hold since [tex]\(\log_{10}1 = 0\)[/tex] therefore [tex]\(10^0 = 1\)[/tex]. Also, the left side would be [tex]\(1^{\log_{10}\left(2.5\right)} \neq 1\)[/tex].
No other [tex]\(x\)[/tex] satisfies the equation other than [tex]\(x = 4\)[/tex]. As [tex]\(4\)[/tex] is the only root, its sum is simply [tex]\(4\)[/tex].
Thus, the sum of the real roots of the equation is:
[tex]\[ \boxed{0} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.