Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To express [tex]\(\frac{x^m}{x^n}\)[/tex] as a power of [tex]\(x\)[/tex], we can use the rules of exponents. Let's go through the solution step by step:
1. Understand the problem:
We need to simplify the expression [tex]\(\frac{x^m}{x^n}\)[/tex], where [tex]\(x\)[/tex] is the base and [tex]\(m\)[/tex] and [tex]\(n\)[/tex] are the exponents.
2. Apply the quotient rule of exponents:
The quotient rule of exponents states that when you divide powers with the same base, you subtract the exponents. The rule is:
[tex]\[ \frac{a^m}{a^n} = a^{m-n} \][/tex]
Here, the base [tex]\(a\)[/tex] is the same in both the numerator and the denominator.
3. Simplify the given expression:
Using the quotient rule of exponents, we can simplify [tex]\(\frac{x^m}{x^n}\)[/tex] as follows:
[tex]\[ \frac{x^m}{x^n} = x^{m-n} \][/tex]
So, the expression [tex]\(\frac{x^m}{x^n}\)[/tex] can be written as [tex]\(x^{m-n}\)[/tex].
1. Understand the problem:
We need to simplify the expression [tex]\(\frac{x^m}{x^n}\)[/tex], where [tex]\(x\)[/tex] is the base and [tex]\(m\)[/tex] and [tex]\(n\)[/tex] are the exponents.
2. Apply the quotient rule of exponents:
The quotient rule of exponents states that when you divide powers with the same base, you subtract the exponents. The rule is:
[tex]\[ \frac{a^m}{a^n} = a^{m-n} \][/tex]
Here, the base [tex]\(a\)[/tex] is the same in both the numerator and the denominator.
3. Simplify the given expression:
Using the quotient rule of exponents, we can simplify [tex]\(\frac{x^m}{x^n}\)[/tex] as follows:
[tex]\[ \frac{x^m}{x^n} = x^{m-n} \][/tex]
So, the expression [tex]\(\frac{x^m}{x^n}\)[/tex] can be written as [tex]\(x^{m-n}\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.