Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which statements are true regarding the two triangles after the transformations, let's go through the logical steps one by one.
1. Scaling Transformations:
- We first apply the scaling transformation [tex]\( D_{ O , 2} \)[/tex] (scaling by a factor of 2) to each vertex of the original triangle [tex]\( \triangle LMN \)[/tex].
- Then, we apply the scaling transformation [tex]\( D_{ O , 0.75} \)[/tex] (scaling by a factor of 0.75) to the results obtained from the first scaling.
2. Coordinate Changes:
- For the initial coordinates:
- [tex]\( L = (-3, 1.5) \)[/tex]
- [tex]\( N = (3, -1.5) \)[/tex]
- Assume [tex]\( M = M_{\text{initial}} \)[/tex]. Here we treat [tex]\( M_{\text{initial}} \)[/tex] as having the same coordinates as [tex]\( L \)[/tex] due to placeholder values.
3. Applying [tex]\( D_{ O , 2} \)[/tex]:
- [tex]\( L' = (-3 \times 2, 1.5 \times 2) = (-6, 3) \)[/tex]
- [tex]\( N' = (3 \times 2, -1.5 \times 2) = (6, -3) \)[/tex]
- Since [tex]\( M \)[/tex] is treated initially the same as [tex]\( L \)[/tex]:
- [tex]\( M' = (-6, 3) \)[/tex]
4. Applying [tex]\( D_{ O , 0.75} \)[/tex]:
- [tex]\( L'' = (-6 \times 0.75, 3 \times 0.75) = (-4.5, 2.25) \)[/tex]
- [tex]\( N'' = (6 \times 0.75, -3 \times 0.75) = (4.5, -2.25) \)[/tex]
- [tex]\( M'' = (-4.5, 2.25) \)[/tex] (as [tex]\( M' \)[/tex] was identical to [tex]\( L' \)[/tex], for this exercise)
5. Statements Analysis:
- [tex]\( \angle M \simeq \angle M'' \)[/tex]: True, because scaling transformations preserve angles.
- [tex]\( \triangle LMN \sim \triangle L'' M'' N'' \)[/tex]: True, because similarity is preserved under uniform scaling.
- [tex]\( \triangle LMN \cong \triangle L'' M'' N'' \)[/tex]: False, because congruent triangles must have the same size and shape, and scaling changes the size.
- The coordinates of vertex [tex]\( L'' \)[/tex] are (-3, 1.5): False, the coordinates of [tex]\( L'' \)[/tex] are indeed (-4.5, 2.25).
- The coordinates of vertex [tex]\( N'' \)[/tex] are (3, -1.5): False, the coordinates of [tex]\( N'' \)[/tex] are (4.5, -2.25).
- The coordinates of vertex [tex]\( M'' \)[/tex] are (1.5, -1.5): False, the coordinates of [tex]\( M'' \)[/tex] are (-4.5, 2.25).
Therefore, the statements that are true are:
- [tex]\( \angle M \simeq \angle M'' \)[/tex]
- [tex]\( \triangle LMN \sim \triangle L'' M'' N'' \)[/tex]
1. Scaling Transformations:
- We first apply the scaling transformation [tex]\( D_{ O , 2} \)[/tex] (scaling by a factor of 2) to each vertex of the original triangle [tex]\( \triangle LMN \)[/tex].
- Then, we apply the scaling transformation [tex]\( D_{ O , 0.75} \)[/tex] (scaling by a factor of 0.75) to the results obtained from the first scaling.
2. Coordinate Changes:
- For the initial coordinates:
- [tex]\( L = (-3, 1.5) \)[/tex]
- [tex]\( N = (3, -1.5) \)[/tex]
- Assume [tex]\( M = M_{\text{initial}} \)[/tex]. Here we treat [tex]\( M_{\text{initial}} \)[/tex] as having the same coordinates as [tex]\( L \)[/tex] due to placeholder values.
3. Applying [tex]\( D_{ O , 2} \)[/tex]:
- [tex]\( L' = (-3 \times 2, 1.5 \times 2) = (-6, 3) \)[/tex]
- [tex]\( N' = (3 \times 2, -1.5 \times 2) = (6, -3) \)[/tex]
- Since [tex]\( M \)[/tex] is treated initially the same as [tex]\( L \)[/tex]:
- [tex]\( M' = (-6, 3) \)[/tex]
4. Applying [tex]\( D_{ O , 0.75} \)[/tex]:
- [tex]\( L'' = (-6 \times 0.75, 3 \times 0.75) = (-4.5, 2.25) \)[/tex]
- [tex]\( N'' = (6 \times 0.75, -3 \times 0.75) = (4.5, -2.25) \)[/tex]
- [tex]\( M'' = (-4.5, 2.25) \)[/tex] (as [tex]\( M' \)[/tex] was identical to [tex]\( L' \)[/tex], for this exercise)
5. Statements Analysis:
- [tex]\( \angle M \simeq \angle M'' \)[/tex]: True, because scaling transformations preserve angles.
- [tex]\( \triangle LMN \sim \triangle L'' M'' N'' \)[/tex]: True, because similarity is preserved under uniform scaling.
- [tex]\( \triangle LMN \cong \triangle L'' M'' N'' \)[/tex]: False, because congruent triangles must have the same size and shape, and scaling changes the size.
- The coordinates of vertex [tex]\( L'' \)[/tex] are (-3, 1.5): False, the coordinates of [tex]\( L'' \)[/tex] are indeed (-4.5, 2.25).
- The coordinates of vertex [tex]\( N'' \)[/tex] are (3, -1.5): False, the coordinates of [tex]\( N'' \)[/tex] are (4.5, -2.25).
- The coordinates of vertex [tex]\( M'' \)[/tex] are (1.5, -1.5): False, the coordinates of [tex]\( M'' \)[/tex] are (-4.5, 2.25).
Therefore, the statements that are true are:
- [tex]\( \angle M \simeq \angle M'' \)[/tex]
- [tex]\( \triangle LMN \sim \triangle L'' M'' N'' \)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.