Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Simplify the following expression:

[tex]\[ \sum_{k=1}^4 k - \sum_{k=2}^8 (2k - 3) + \sum_{k=5}^{12} 2k^2 \][/tex]


Sagot :

Sure, let's solve the given expression step-by-step.

The expression we need to evaluate is:

[tex]\[ \sum_{k=1}^4 k - \sum_{k=2}^8 (2k - 3) + \sum_{k=5}^{12} 2k^2 \][/tex]

### Step 1: Evaluate [tex]\(\sum_{k=1}^4 k\)[/tex]

This is the sum of the first four positive integers:
[tex]\[ 1 + 2 + 3 + 4 = 10 \][/tex]

So,
[tex]\[ \sum_{k=1}^4 k = 10 \][/tex]

### Step 2: Evaluate [tex]\(\sum_{k=2}^8 (2k - 3)\)[/tex]

We need to evaluate the summation of the expression [tex]\((2k - 3)\)[/tex] from [tex]\(k = 2\)[/tex] to [tex]\(k = 8\)[/tex].

Calculating each term:
[tex]\[ \begin{align*} k = 2: & \quad 2(2) - 3 = 4 - 3 = 1 \\ k = 3: & \quad 2(3) - 3 = 6 - 3 = 3 \\ k = 4: & \quad 2(4) - 3 = 8 - 3 = 5 \\ k = 5: & \quad 2(5) - 3 = 10 - 3 = 7 \\ k = 6: & \quad 2(6) - 3 = 12 - 3 = 9 \\ k = 7: & \quad 2(7) - 3 = 14 - 3 = 11 \\ k = 8: & \quad 2(8) - 3 = 16 - 3 = 13 \\ \end{align*} \][/tex]

Summing these values:
[tex]\[ 1 + 3 + 5 + 7 + 9 + 11 + 13 = 49 \][/tex]

So,
[tex]\[ \sum_{k=2}^8 (2k - 3) = 49 \][/tex]

### Step 3: Evaluate [tex]\(\sum_{k=5}^{12} 2k^2\)[/tex]

We need to evaluate the summation of the expression [tex]\(2k^2\)[/tex] from [tex]\(k = 5\)[/tex] to [tex]\(k = 12\)[/tex].

Calculating each term:
[tex]\[ \begin{align*} k = 5: & \quad 2(5^2) = 2(25) = 50 \\ k = 6: & \quad 2(6^2) = 2(36) = 72 \\ k = 7: & \quad 2(7^2) = 2(49) = 98 \\ k = 8: & \quad 2(8^2) = 2(64) = 128 \\ k = 9: & \quad 2(9^2) = 2(81) = 162 \\ k = 10: & \quad 2(10^2) = 2(100) = 200 \\ k = 11: & \quad 2(11^2) = 2(121) = 242 \\ k = 12: & \quad 2(12^2) = 2(144) = 288 \\ \end{align*} \][/tex]

Summing these values:
[tex]\[ 50 + 72 + 98 + 128 + 162 + 200 + 242 + 288 = 1240 \][/tex]

So,
[tex]\[ \sum_{k=5}^{12} 2k^2 = 1240 \][/tex]

### Step 4: Combine the results

Now, we can combine all the results to find the final value of the expression:
[tex]\[ 10 - 49 + 1240 \][/tex]

Calculating:
[tex]\[ 10 - 49 = -39 \][/tex]
[tex]\[ -39 + 1240 = 1201 \][/tex]

Thus, the final result is:
[tex]\[ \boxed{1201} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.